Stabilization of the Inertia Wheel Inverted Pendulum by Advanced IDA-PBC Based Controllers: Comparative Study and Real-Time Experiments
Authors
Afef Hfaiedh, Ahmed Chemori, Afef Abdelkrim
Abstract
Interconnection and Damping Assignment Passivity Based Control (IDA-PBC) is a popular control scheme, for the stabilization of underactuated mechanical systems, formulated in Port-Controlled Hamiltonian (PCH) structure. However, robustness enhancement of this control approach towards external disturbances remains an challenging and an open problem. In this paper, an experimental comparative study between two different IDA-PBC approaches is proposed. The first controller is a nonlinear Proportional Integral IDA-PBC, while the second one is a model reference adaptive IDA - PBC. To evaluate the effectiveness of both controllers, various real-time experimental scenarios have been conducted for the stabilization of the inertia wheel inverted pendulum. For the sake of a fair comparison, different performance-evaluation criteria have been proposed to quantify the control performance in terms of convergence and energy consumption. The results show a better performance of the nonlinear Proportional Integral IDA - PBC controller compared to the model reference adaptive IDA - PBC controller.
Citation
- Journal: 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD)
- Year: 2020
- Volume:
- Issue:
- Pages: 753–760
- Publisher: IEEE
- DOI: 10.1109/ssd49366.2020.9364159
BibTeX
@inproceedings{Hfaiedh_2020,
title={{Stabilization of the Inertia Wheel Inverted Pendulum by Advanced IDA-PBC Based Controllers: Comparative Study and Real-Time Experiments}},
DOI={10.1109/ssd49366.2020.9364159},
booktitle={{2020 17th International Multi-Conference on Systems, Signals & Devices (SSD)}},
publisher={IEEE},
author={Hfaiedh, Afef and Chemori, Ahmed and Abdelkrim, Afef},
year={2020},
pages={753--760}
}
References
- Andary, S., Chemori, A. & Krut, S. Estimation-based disturbance rejection in control for limit cycle generation on inertia wheel inverted pendulum testbed. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems 1302–1307 (2009) doi:10.1109/iros.2009.5354120 – 10.1109/iros.2009.5354120
- Andary, S., Chemori, A. & Krut, S. Stable limit cycle generation for underactuated mechanical systems, application: Inertia wheel inverted pendulum. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems 526–531 (2008) doi:10.1109/iros.2008.4650994 – 10.1109/iros.2008.4650994
- Khraief Haddad, N., Belghith, S., Gritli, H. & Chemori, A. From Hopf Bifurcation to Limit Cycles Control in Underactuated Mechanical Systems. Int. J. Bifurcation Chaos 27, 1750104 (2017) – 10.1142/s0218127417501048
- Gritli, H., Khraief, N., Chemori, A. & Belghith, S. Self-generated limit cycle tracking of the underactuated inertia wheel inverted pendulum under IDA-PBC. Nonlinear Dyn 89, 2195–2226 (2017) – 10.1007/s11071-017-3578-y
- González, H., Duarte-Mermoud, M. A., Pelissier, I., Travieso-Torres, J. C. & Ortega, R. A novel induction motor control scheme using IDA-PBC. J. Control Theory Appl. 6, 59–68 (2008) – 10.1007/s11768-008-7193-9
- Ramírez, H., Sbarbaro, D. & Ortega, R. On the control of non-linear processes: An IDA–PBC approach. Journal of Process Control 19, 405–414 (2009) – 10.1016/j.jprocont.2008.06.018
- Aoues, S., Matignon, D. & Alazard, D. Control of a flexible spacecraft using discrete IDA-PBC design. IFAC-PapersOnLine 48, 188–193 (2015) – 10.1016/j.ifacol.2015.10.237
- Gómez-Estern, F. & Van der Schaft, A. J. Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems. European Journal of Control 10, 451–468 (2004) – 10.3166/ejc.10.451-468
- Viola, G., Ortega, R., Banavar, R., Acosta, J. A. & Astolfi, A. Total Energy Shaping Control of Mechanical Systems: Simplifying the Matching Equations Via Coordinate Changes. IEEE Trans. Automat. Contr. 52, 1093–1099 (2007) – 10.1109/tac.2007.899064
- Ryalat, M. & Laila, D. S. IDA-PBC for a class of underactuated mechanical systems with application to a rotary inverted pendulum. 52nd IEEE Conference on Decision and Control 5240–5245 (2013) doi:10.1109/cdc.2013.6760713 – 10.1109/cdc.2013.6760713
- Santibanez, V., Kelly, R. & Sandoval, J. Control of the Inertia Wheel Pendulum by Bounded Torques. Proceedings of the 44th IEEE Conference on Decision and Control 8266–8270 doi:10.1109/cdc.2005.1583500 – 10.1109/cdc.2005.1583500
- Tiefensee, F., Monaco, S. & Normand-Cyrot, D. IDA-PBC under sampling for port-controlled hamiltonian systems. Proceedings of the 2010 American Control Conference 1811–1816 (2010) doi:10.1109/acc.2010.5531444 – 10.1109/acc.2010.5531444
- Ryalat, M., Laila, D. S. & Torbati, M. M. Integral IDA-PBC and PID-like control for port-controlled Hamiltonian systems. 2015 American Control Conference (ACC) 5365–5370 (2015) doi:10.1109/acc.2015.7172178 – 10.1109/acc.2015.7172178
- Donaire, A., Romero, J. G., Ortega, R., Siciliano, B. & Crespo, M. Robust IDA-PBC for underactuated mechanical systems subject to matched disturbances. Int. J. Robust. Nonlinear Control 27, 1000–1016 (2016) – 10.1002/rnc.3615
- Andary, S. & Chemori, A. A dual model-free control of non-minimum phase systems for generation of stable limit cycles. IEEE Conference on Decision and Control and European Control Conference 1387–1392 (2011) doi:10.1109/cdc.2011.6160704 – 10.1109/cdc.2011.6160704
- Krafes, S., Chalh, Z. & Saka, A. A Review on the Control of Second Order Underactuated Mechanical Systems. Complexity 2018, (2018) – 10.1155/2018/9573514
- Ghommam, J. & Chemori, A. Adaptive RBFNN finite-time control of normal forms for underactuated mechanical systems. Nonlinear Dyn 90, 301–315 (2017) – 10.1007/s11071-017-3662-3
- Spong, M. W. Underactuated mechanical systems. Lecture Notes in Control and Information Sciences 135–150 doi:10.1007/bfb0015081 – 10.1007/bfb0015081
- Haddad, N. K., Chemori, A. & Belghith, S. Robustness enhancement of IDA-PBC controller in stabilising the inertia wheel inverted pendulum: theory and real-time experiments. International Journal of Control 91, 2657–2672 (2017) – 10.1080/00207179.2017.1331378
- Zayane-Aissa, C., Laleg-Kirati, T.-M. & Chemori, A. Control of a perturbed under-actuated mechanical system. 2015 IEEE Conference on Control Applications (CCA) 294–299 (2015) doi:10.1109/cca.2015.7320644 – 10.1109/cca.2015.7320644
- van der schaft, Port-controlled hamiltonian systems: Towards a theory for control and design of nonlinear physical systems. Journal of the Society of Instrument and Control Engineers (2000)
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Automat. Contr. 47, 1218–1233 (2002) – 10.1109/tac.2002.800770
- Ryalat, M. & Laila, D. S. A Robust IDA-PBC Approach for Handling Uncertainties in Underactuated Mechanical Systems. IEEE Trans. Automat. Contr. 63, 3495–3502 (2018) – 10.1109/tac.2018.2797191
- Choukchou-Braham, A., Cherki, B., Djemaï, M. & Busawon, K. Analysis and Control of Underactuated Mechanical Systems. (Springer International Publishing, 2014). doi:10.1007/978-3-319-02636-7 – 10.1007/978-3-319-02636-7
- Rodriguez, H., Ortega, R., Escobar, G. & Barabanov, N. A robustly stable output feedback saturated controller for the boost DC-to-DC converter. Systems & Control Letters 40, 1–8 (2000) – 10.1016/s0167-6911(99)00113-9
- Andary, S., Chemori, A. & Krut, S. Control of the Underactuated Inertia Wheel Inverted Pendulum for Stable Limit Cycle Generation. Advanced Robotics 23, 1999–2014 (2009) – 10.1163/016918609x12529279062438
- haddad, Sta-bilization of inertia wheel inverted pendulum by model reference adaptive ida-pbc: From simulation to real-time experiments. 2015 3rd International Conference on Control Engineering & Information Technology (CEIT) (2015)
- Spong, M. W., Corke, P. & Lozano, R. Nonlinear control of the Reaction Wheel Pendulum. Automatica 37, 1845–1851 (2001) – 10.1016/s0005-1098(01)00145-5
- Haddad, N. K., Chemori, A. & Belghith, S. External disturbance rejection in IDA-PBC controller for underactuated mechanical systems: From theory to real time experiments. 2014 IEEE Conference on Control Applications (CCA) 1747–1752 (2014) doi:10.1109/cca.2014.6981565 – 10.1109/cca.2014.6981565
- Andary, S., Chemori, A., Benoit, M. & Sallantin, J. A dual model-free control of underactuated mechanical systems, application to the inertia wheel inverted pendulum. 2012 American Control Conference (ACC) 1029–1034 (2012) doi:10.1109/acc.2012.6315492 – 10.1109/acc.2012.6315492
- Freidovich, L. B. et al. Shaping stable periodic motions of inertia wheel pendulum: theory and experiment. Asian Journal of Control 11, 548–556 (2009) – 10.1002/asjc.135
- hfaiedh, Rise controller for class I underactuated mechanical systems: Design and real-time experiments. The 3rd International Conference on Electromechanical Engineering (ICEE’2018) (2018)
- Aguilar-Avelar, C., Rodríguez-Calderón, R., Puga-Guzmán, S. & Moreno-Valenzuela, J. Effects of nonlinear friction compensation in the inertia wheel pendulum. J Mech Sci Technol 31, 4425–4433 (2017) – 10.1007/s12206-017-0843-4