Stability-preserving parametric model reduction by matrix interpolation
Authors
Rudy Eid, Rosa Castañé-Selga, Heiko Panzer, Thomas Wolf, Boris Lohmann
Abstract
In this article, a method to preserve stability in parametric model reduction by matrix interpolation is presented. Based on the matrix measure approach, sufficient conditions on the original system matrices are derived. Once they are fulfilled, the stability of each of the reduced models is guaranteed as well as that of the parametric model resulting from interpolation. In addition, it is shown that these sufficient conditions are met by port-Hamiltonian systems and by a relevant set of second-order systems obtained by the finite element method. The new approach is illustrated by two numerical examples.
Citation
- Journal: Mathematical and Computer Modelling of Dynamical Systems
- Year: 2011
- Volume: 17
- Issue: 4
- Pages: 319–335
- Publisher: Informa UK Limited
- DOI: 10.1080/13873954.2011.547671
BibTeX
@article{Eid_2011,
title={{Stability-preserving parametric model reduction by matrix interpolation}},
volume={17},
ISSN={1744-5051},
DOI={10.1080/13873954.2011.547671},
number={4},
journal={Mathematical and Computer Modelling of Dynamical Systems},
publisher={Informa UK Limited},
author={Eid, Rudy and Castañé-Selga, Rosa and Panzer, Heiko and Wolf, Thomas and Lohmann, Boris},
year={2011},
pages={319--335}
}
References
- Weile, D. S., Michielssen, E., Grimme, E. & Gallivan, K. A method for generating rational interpolant reduced order models of two-parameter linear systems. Applied Mathematics Letters vol. 12 93–102 (1999) – 10.1016/s0893-9659(99)00063-4
- Daniel, L., Siong, O. C., Chay, L. S., Lee, K. H. & White, J. A Multiparameter Moment-Matching Model-Reduction Approach for Generating Geometrically Parameterized Interconnect Performance Models. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems vol. 23 678–693 (2004) – 10.1109/tcad.2004.826583
- Leung A.T., Proc. Intl. Symp. Circuits Syst. 2 (2005)
- Peng Li, Liu, F., Xin Li, Pileggi, L. T. & Nassif, S. R. Modeling Interconnect Variability Using Efficient Parametric Model Order Reduction. Design, Automation and Test in Europe 958–963 doi:10.1109/date.2005.213 – 10.1109/date.2005.213
- Baur, U. & Benner, P. Modellreduktion für parametrisierte Systeme durch balanciertes Abschneiden und InterpolationModel Reduction for Parametric Systems Using Balanced Truncation and Interpolation. at - Automatisierungstechnik vol. 57 411–419 (2009) – 10.1524/auto.2009.0787
- Baur U., Interpolatory Projection Methods for Parameterized Model Reduction (2009)
- Panzer, H., Mohring, J., Eid, R. & Lohmann, B. Parametric Model Order Reduction by Matrix Interpolation. auto vol. 58 475–484 (2010) – 10.1524/auto.2010.0863
- Lohmann B., Methoden und Anwendungen der Regelungstechnik (2009)
- Bai Z., Stable and passive reduced-order models based on partial Padé approximation via the Lanczos process (1997)
- Grimme, E. J., Sorensen, D. C. & Van Dooren, P. Model reduction of state space systems via an implicitly restarted Lanczos method. Numerical Algorithms vol. 12 1–31 (1996) – 10.1007/bf02141739
- Jaimoukha, I. M. & Kasenally, E. M. Implicitly Restarted Krylov Subspace Methods for Stable Partial Realizations. SIAM Journal on Matrix Analysis and Applications vol. 18 633–652 (1997) – 10.1137/s0895479895279873
- Antoulas, A. C. A new result on passivity preserving model reduction. Systems & Control Letters vol. 54 361–374 (2005) – 10.1016/j.sysconle.2004.07.007
- Sorensen, D. C. Passivity preserving model reduction via interpolation of spectral zeros. Systems & Control Letters vol. 54 347–360 (2005) – 10.1016/j.sysconle.2004.07.006
- Ionutiu, R., Rommes, J. & Antoulas, A. C. Passivity-Preserving Model Reduction Using Dominant Spectral-Zero Interpolation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems vol. 27 2250–2263 (2008) – 10.1109/tcad.2008.2006160
- VILLEMAGNE, C. D. & SKELTON, R. E. Model reductions using a projection formulation. International Journal of Control vol. 46 2141–2169 (1987) – 10.1080/00207178708934040
- Gugercin, S. & Antoulas, A. C. Model reduction of large-scale systems by least squares. Linear Algebra and its Applications vol. 415 290–321 (2006) – 10.1016/j.laa.2004.12.022
- Yousefi A., Preserving stability in model and controller reduction with application to embedded systems (2006)
- Castañé-Selga R., submitted to Eur. J. Control (2010)
- Antoulas, A. C. Approximation of Large-Scale Dynamical Systems. (2005) doi:10.1137/1.9780898718713 – 10.1137/1.9780898718713
- Freund, R. W. Model reduction methods based on Krylov subspaces. Acta Numerica vol. 12 267–319 (2003) – 10.1017/s0962492902000120
- Grimme E.J., Krylov projection methods for model reduction (1997)
- Deutsch, E. On matrix norms and logarithmic norms. Numerische Mathematik vol. 24 49–51 (1975) – 10.1007/bf01437217
- Ström, T. On Logarithmic Norms. SIAM Journal on Numerical Analysis vol. 12 741–753 (1975) – 10.1137/0712055
- Higueras, I. & Garcia-Celayeta, B. Logarithmic Norms for Matrix Pencils. SIAM Journal on Matrix Analysis and Applications vol. 20 646–666 (1999) – 10.1137/s0895479897325955
- BENNER, P., QUINTANA-ORT�, E. S. & QUINTANA-ORT�, G. Balanced Truncation Model Reduction of Large-Scale Dense Systems on Parallel Computers. Mathematical and Computer Modelling of Dynamical Systems vol. 6 383–405 (2000) – 10.1076/mcmd.6.4.383.3658
- Penzl, T. A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations. SIAM Journal on Scientific Computing vol. 21 1401–1418 (1999) – 10.1137/s1064827598347666
- Gugercin, S., Sorensen, D. C. & Antoulas, A. C. Numerical Algorithms vol. 32 27–55 (2003) – 10.1023/a:1022205420182
- Li, J.-R. & White, J. Low-Rank Solution of Lyapunov Equations. SIAM Review vol. 46 693–713 (2004) – 10.1137/s0036144504443389
- Osborne, E. E. On Pre-Conditioning of Matrices. Journal of the ACM vol. 7 338–345 (1960) – 10.1145/321043.321048
- Chen T., Preconditioning sparse matrices for computing eigenvalues and solving linear systems equations (2001)
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Wolf, T., Lohmann, B., Eid, R. & Kotyczka, P. Passivity and Structure Preserving Order Reduction of Linear Port-Hamiltonian Systems Using Krylov Subspaces. European Journal of Control vol. 16 401–406 (2010) – 10.3166/ejc.16.401-406
- Salimbahrami B., Structure preserving order reduction of large scale second order models (2005)
- Panzer H., Generating a parametric finite element model of a 3D cantilever timoshenko beam using matlab (2009)