Stability and Consensus of Electrical Circuits via Structural Properties
Authors
Sofía Avila-Becerril, Gerardo Espinosa-Pérez, Paul Fernández-Carrillo
Abstract
In this paper stability and consensus on electrical circuits is approached. The novelty of the presented results lies in the fact that, contrary to the usual practice of establishing these properties for a given circuit, generic features of this class of networks are interpreted in terms of interconnections of the circuit elements to conceive specific topologies for which both stability and consensus are guaranteed. Fundamental for this achievement is the Hamiltonian structure exhibited by the circuits, since the features enjoyed by this kind of dynamical systems allow to systematically state the structural (interconnection) properties under which stability is assured while conditions to conclude consensus are derived from the analysis of its equilibria.
Keywords
Electrical circuits; Hamiltonian systems; Consensus; Graph theory
Citation
- Journal: IFAC-PapersOnLine
- Year: 2015
- Volume: 48
- Issue: 13
- Pages: 111–116
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2015.10.223
- Note: 5th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2015- Lyon, France, 4–7 July 2015
BibTeX
@article{Avila_Becerril_2015,
title={{Stability and Consensus of Electrical Circuits via Structural Properties}},
volume={48},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2015.10.223},
number={13},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Avila-Becerril, Sofía and Espinosa-Pérez, Gerardo and Fernández-Carrillo, Paul},
year={2015},
pages={111--116}
}
References
- Bondy, J. A. & Murty, U. S. R. Graph Theory with Applications. (Macmillan Education UK, 1976). doi:10.1007/978-1-349-03521-2 – 10.1007/978-1-349-03521-2
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quarterly of Applied Mathematics vol. 22 1–33 (1964) – 10.1090/qam/169746
- Desoer, C. and Kuh, E. (1969). Basic Circuit Theory. McGraw-Hill.
- Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control vol. 19 477–485 (2013) – 10.1016/j.ejcon.2013.09.002
- Jayawardhana, B., Ortega, R., García-Canseco, E. & Castaños, F. Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits. Systems & Control Letters vol. 56 618–622 (2007) – 10.1016/j.sysconle.2007.03.011
- Jeltsema, D. & Scherpen, J. M. A. A dual relation between port-Hamiltonian systems and the Brayton–Moser equations for nonlinear switched RLC circuits. Automatica vol. 39 969–979 (2003) – 10.1016/s0005-1098(03)00070-0
- Kundur, P., Balu, N., and Lauby, M. (1994). Power system stability and control, volume 7. McGraw-hill New York.
- Ortega, R., Jeltsema, D. & Scherpen, J. M. A. Power shaping: A new paradigm for stabilization of nonlinear RLC circuits. IEEE Transactions on Automatic Control vol. 48 1762–1767 (2003) – 10.1109/tac.2003.817918
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Rashid, M. (2013). Power electronics: Circuits, Devices & Applications (4th ed.). Academic Press.
- van der Schaft, A. Characterization and partial synthesis of the behavior of resistive circuits at their terminals. Systems & Control Letters vol. 59 423–428 (2010) – 10.1016/j.sysconle.2010.05.005
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Wellstead, P. (1979). Introduction to physical system modelling. Academic Press London.