Splitting Methods for Linear Coupled Field-Circuit DAEs
Authors
Abstract
The application of operator splitting methods to ordinary differential equations (ODEs) is well established. However, for differential-algebraic equations (DAEs) it is subjected to many restrictions due to the presence of (possibly hidden) constraints. In order to get convergence of the operator splitting for DAEs, it is important to have and exploit a suitable decoupled structure for the desired DAE system. Here we present a coupled field-circuit modeling via a loop-cutset analysis and the choice of a suitable tree that results in a port-Hamiltonian DAE system. Finally, we introduce an operator splitting approach of such linear coupled field-circuit DAEs and present convergence results for the proposed approach.
Citation
- ISBN: 9783031545160
- Publisher: Springer Nature Switzerland
- DOI: 10.1007/978-3-031-54517-7_18
- Note: International Conference on Scientific Computing in Electrical Engineering
BibTeX
@inbook{Diab_2024,
title={{Splitting Methods for Linear Coupled Field-Circuit DAEs}},
ISBN={9783031545177},
ISSN={2198-3283},
DOI={10.1007/978-3-031-54517-7_18},
booktitle={{Scientific Computing in Electrical Engineering}},
publisher={Springer Nature Switzerland},
author={Diab, Malak and Tischendorf, Caren},
year={2024},
pages={159--166}
}References
- Bj&orhus, M. Operator splitting for abstract Cauchy problems. IMA Journal of Numerical Analysis 18, 419–443 (1998) – 10.1093/imanum/18.3.419
- Diab, M. & Tischendorf, C. Splitting Methods for Linear Circuit DAEs of Index 1 in port-Hamiltonian Form. Mathematics in Industry 211–219 (2021) doi:10.1007/978-3-030-84238-3_21 – 10.1007/978-3-030-84238-3_21
- LO Chua, Linear and Nonlinear Circuits (1987)
- T Weiland, Int. J. Electron. Commun. (1977)
- Lamour, R., März, R. & Tischendorf, C. Differential-Algebraic Equations: A Projector Based Analysis. (Springer Berlin Heidelberg, 2013). doi:10.1007/978-3-642-27555-5 – 10.1007/978-3-642-27555-5
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Hairer, E., Wanner, G. & Lubich, C. Geometric Numerical Integration. Springer Series in Computational Mathematics (Springer Berlin Heidelberg, 2002). doi:10.1007/978-3-662-05018-7 – 10.1007/978-3-662-05018-7
- Chronopoulos, A. T. s-Step Iterative Methods for (Non)Symmetric (In)Definite Linear Systems. SIAM J. Numer. Anal. 28, 1776–1789 (1991) – 10.1137/0728088
- Diab, M. Splitting Methods for Partial Differential-Algebraic Systems with Application on Coupled Field-Circuit DAEs. Preprint at https://doi.org/10.18452/25731 (2023) – 10.18452/25731