Robustness of distributed averaging control in power systems: Time delays & dynamic communication topology
Authors
Johannes Schiffer, Florian Dörfler, Emilia Fridman
Abstract
Distributed averaging-based integral (DAI) controllers are becoming increasingly popular in power system applications. The literature has thus far primarily focused on disturbance rejection, steady-state optimality and adaption to complex physical system models without considering uncertainties on the cyber and communication layer nor their effect on robustness and performance. In this paper, we derive sufficient delay-dependent conditions for robust stability of a secondary-frequency-DAI-controlled power system with respect to heterogeneous communication delays, link failures and packet losses. Our analysis takes into account both constant as well as fast-varying delays, and it is based on a common strictly decreasing Lyapunov–Krasovskii functional. The conditions illustrate an inherent trade-off between robustness and performance of DAI controllers. The effectiveness and tightness of our stability certificates are illustrated via a numerical example based on Kundur’s four-machine-two-area test system.
Keywords
Power system stability; Cyber–physical systems; Time delays; Distributed control
Citation
- Journal: Automatica
- Year: 2017
- Volume: 80
- Issue:
- Pages: 261–271
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2017.02.040
BibTeX
@article{Schiffer_2017,
title={{Robustness of distributed averaging control in power systems: Time delays & dynamic communication topology}},
volume={80},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2017.02.040},
journal={Automatica},
publisher={Elsevier BV},
author={Schiffer, Johannes and Dörfler, Florian and Fridman, Emilia},
year={2017},
pages={261--271}
}
References
- Ahumada, C., Cardenas, R., Saez, D. & Guerrero, J. M. Secondary Control Strategies for Frequency Restoration in Islanded Microgrids With Consideration of Communication Delays. IEEE Transactions on Smart Grid vol. 7 1430–1441 (2016) – 10.1109/tsg.2015.2461190
- Andreasson, M., Sandberg, H., Dimarogonas, D. V. & Johansson, K. H. Distributed integral action: Stability analysis and frequency control of power systems. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) 2077–2083 (2012) doi:10.1109/cdc.2012.6426463 – 10.1109/cdc.2012.6426463
- Dorfler, F., Simpson-Porco, J. W. & Bullo, F. Breaking the Hierarchy: Distributed Control and Economic Optimality in Microgrids. IEEE Transactions on Control of Network Systems vol. 3 241–253 (2016) – 10.1109/tcns.2015.2459391
- Distributed Control Systems for Small-Scale Power Networks: Using Multiagent Cooperative Control Theory. IEEE Control Systems vol. 34 56–77 (2014) – 10.1109/mcs.2014.2350571
- Bullo, (2004)
- Coelho, E. A. A. et al. Small-Signal Analysis of the Microgrid Secondary Control Considering a Communication Time Delay. IEEE Transactions on Industrial Electronics vol. 63 6257–6269 (2016) – 10.1109/tie.2016.2581155
- Diestel, (2000)
- Dorfler, F. & Bullo, F. Kron Reduction of Graphs With Applications to Electrical Networks. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 60 150–163 (2013) – 10.1109/tcsi.2012.2215780
- Freeman, R. A., Yang, P. & Lynch, K. M. Stability and Convergence Properties of Dynamic Average Consensus Estimators. Proceedings of the 45th IEEE Conference on Decision and Control 338–343 (2006) doi:10.1109/cdc.2006.377078 – 10.1109/cdc.2006.377078
- Fridman, E. Tutorial on Lyapunov-based methods for time-delay systems. European Journal of Control vol. 20 271–283 (2014) – 10.1016/j.ejcon.2014.10.001
- Fridman, (2014)
- Fridman, E., Seuret, A. & Richard, J.-P. Robust sampled-data stabilization of linear systems: an input delay approach. Automatica vol. 40 1441–1446 (2004) – 10.1016/j.automatica.2004.03.003
- Godsil, (2001)
- Hespanha, J. P., Naghshtabrizi, P. & Xu, Y. A Survey of Recent Results in Networked Control Systems. Proceedings of the IEEE vol. 95 138–162 (2007) – 10.1109/jproc.2006.887288
- Jadbabaie, A., Jie Lin & Morse, A. S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control vol. 48 988–1001 (2003) – 10.1109/tac.2003.812781
- Khalil, (2002)
- Kundur, (1994)
- Lai, J., Zhou, H., Lu, X. & Liu, Z. Distributed power control for DERs based on networked multiagent systems with communication delays. Neurocomputing vol. 179 135–143 (2016) – 10.1016/j.neucom.2015.11.068
- Lai, J., Zhou, H., Lu, X., Yu, X. & Hu, W. Droop-Based Distributed Cooperative Control for Microgrids With Time-Varying Delays. IEEE Transactions on Smart Grid vol. 7 1775–1789 (2016) – 10.1109/tsg.2016.2557813
- Lin, P. & Jia, Y. Average consensus in networks of multi-agents with both switching topology and coupling time-delay. Physica A: Statistical Mechanics and its Applications vol. 387 303–313 (2008) – 10.1016/j.physa.2007.08.040
- Liu, K. & Fridman, E. Wirtinger’s inequality and Lyapunov-based sampled-data stabilization. Automatica vol. 48 102–108 (2012) – 10.1016/j.automatica.2011.09.029
- Liu, S., Wang, X. & Liu, P. X. Impact of Communication Delays on Secondary Frequency Control in an Islanded Microgrid. IEEE Transactions on Industrial Electronics vol. 62 2021–2031 (2015) – 10.1109/tie.2014.2367456
- Lofberg, J. YALMIP : a toolbox for modeling and optimization in MATLAB. 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508) 284–289 doi:10.1109/cacsd.2004.1393890 – 10.1109/cacsd.2004.1393890
- McArthur, S. D. J. et al. Multi-Agent Systems for Power Engineering Applications—Part I: Concepts, Approaches, and Technical Challenges. IEEE Transactions on Power Systems vol. 22 1743–1752 (2007) – 10.1109/tpwrs.2007.908471
- Monshizadeh, N. & De Persis, C. Agreeing in networks: Unmatched disturbances, algebraic constraints and optimality. Automatica vol. 75 63–74 (2017) – 10.1016/j.automatica.2016.09.008
- Olfati-Saber, R., Fax, J. A. & Murray, R. M. Consensus and Cooperation in Networked Multi-Agent Systems. Proceedings of the IEEE vol. 95 215–233 (2007) – 10.1109/jproc.2006.887293
- Olfati-Saber, R. & Murray, R. M. Consensus Problems in Networks of Agents With Switching Topology and Time-Delays. IEEE Transactions on Automatic Control vol. 49 1520–1533 (2004) – 10.1109/tac.2004.834113
- Pai, (1989)
- Park, P., Ko, J. W. & Jeong, C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica vol. 47 235–238 (2011) – 10.1016/j.automatica.2010.10.014
- Pedersen, R., Sloth, C. & Wisniewski, R. Active power management in power distribution grids: Disturbance modeling and rejection. 2016 European Control Conference (ECC) 1782–1787 (2016) doi:10.1109/ecc.2016.7810549 – 10.1109/ecc.2016.7810549
- Persis, A Lyapunov approach to control of microgrids with a network-preserved differential-algebraic model. (2016)
- Schiffer, (2015)
- Schiffer, J. & Dorfler, F. On stability of a distributed averaging PI frequency and active power controlled differential-algebraic power system model. 2016 European Control Conference (ECC) 1487–1492 (2016) doi:10.1109/ecc.2016.7810500 – 10.1109/ecc.2016.7810500
- Schiffer, J., Fridman, E. & Ortega, R. Stability of a class of delayed port-Hamiltonian systems with application to droop-controlled microgrids. 2015 54th IEEE Conference on Decision and Control (CDC) 6391–6396 (2015) doi:10.1109/cdc.2015.7403226 – 10.1109/cdc.2015.7403226
- Schiffer, J., Fridman, E., Ortega, R. & Raisch, J. Stability of a class of delayed port-Hamiltonian systems with application to microgrids with distributed rotational and electronic generation. Automatica vol. 74 71–79 (2016) – 10.1016/j.automatica.2016.07.022
- Schiffer, J., Goldin, D., Raisch, J. & Sezi, T. Synchronization of droop-controlled microgrids with distributed rotational and electronic generation. 52nd IEEE Conference on Decision and Control 2334–2339 (2013) doi:10.1109/cdc.2013.6760229 – 10.1109/cdc.2013.6760229
- Schiffer, J., Ortega, R., Astolfi, A., Raisch, J. & Sezi, T. Conditions for stability of droop-controlled inverter-based microgrids. Automatica vol. 50 2457–2469 (2014) – 10.1016/j.automatica.2014.08.009
- Schiffer, J. et al. A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources. Automatica vol. 74 135–150 (2016) – 10.1016/j.automatica.2016.07.036
- Simpson-Porco, J. W., Dörfler, F. & Bullo, F. Synchronization and power sharing for droop-controlled inverters in islanded microgrids. Automatica vol. 49 2603–2611 (2013) – 10.1016/j.automatica.2013.05.018
- Stegink, A unifying energy-based approach to stability of power grids with market dynamics. IEEE Transactions on Automatic Control (2016)
- Stegink, Optimal power dispatch in networks of high-dimensional models of synchronous machines. (2016)
- Strbac, G. et al. Microgrids: Enhancing the Resilience of the European Megagrid. IEEE Power and Energy Magazine vol. 13 35–43 (2015) – 10.1109/mpe.2015.2397336
- Trip, S., Bürger, M. & De Persis, C. An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages. Automatica vol. 64 240–253 (2016) – 10.1016/j.automatica.2015.11.021
- Wang, Q.-G. Necessary and sufficient conditions for stability of a matrix polytope with normal vertex matrices. Automatica vol. 27 887–888 (1991) – 10.1016/0005-1098(91)90047-6
- Winter, W., Elkington, K., Bareux, G. & Kostevc, J. Pushing the Limits: Europe’s New Grid: Innovative Tools to Combat Transmission Bottlenecks and Reduced Inertia. IEEE Power and Energy Magazine vol. 13 60–74 (2015) – 10.1109/mpe.2014.2363534
- Wu, X., Dorfler, F. & Jovanovic, M. R. Input-Output Analysis and Decentralized Optimal Control of Inter-Area Oscillations in Power Systems. IEEE Transactions on Power Systems vol. 31 2434–2444 (2016) – 10.1109/tpwrs.2015.2451592
- Yang, Q., Barria, J. A. & Green, T. C. Communication Infrastructures for Distributed Control of Power Distribution Networks. IEEE Transactions on Industrial Informatics vol. 7 316–327 (2011) – 10.1109/tii.2011.2123903
- Zhang, X., Kang, R., McCulloch, M. & Papachristodoulou, A. Real-time active and reactive power regulation in power systems with tap-changing transformers and controllable loads. Sustainable Energy, Grids and Networks vol. 5 27–38 (2016) – 10.1016/j.segan.2015.10.006
- Zhang, Redesigning generation control in power systems: Methodology, stability and delay robustness. (2014)
- Zhao, C., Mallada, E. & Dorfler, F. Distributed frequency control for stability and economic dispatch in power networks. 2015 American Control Conference (ACC) (2015) doi:10.1109/acc.2015.7171085 – 10.1109/acc.2015.7171085
- Zhong, (2013)