Agreeing in networks: Unmatched disturbances, algebraic constraints and optimality
Authors
Nima Monshizadeh, Claudio De Persis
Abstract
This paper considers a problem of output agreement in heterogeneous networks with dynamics on the nodes as well as on the edges. The control and disturbance signals entering the nodal dynamics are “unmatched” meaning that some nodes are only subject to disturbances and not to the actuating signals. To further enrich our model and motivated by synchronization problems in physical networks, we accommodate (solvable) algebraic constraints resulting in a fairly general and heterogeneous network. It is shown that appropriate dynamic feedback controllers achieve output agreement on a desired vector, in the presence of physical coupling and despite the influence of constant as well as time-varying disturbances. Furthermore, we address the case of an optimal steady-state deployment of the control effort over the network by suitable distributed controllers. As a case study, the proposed results are applied to a heterogeneous microgrid.
Keywords
Output agreement; Algebraic constraints; Heterogeneous networks; Unmatched disturbances
Citation
- Journal: Automatica
- Year: 2017
- Volume: 75
- Issue:
- Pages: 63–74
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2016.09.008
BibTeX
@article{Monshizadeh_2017,
title={{Agreeing in networks: Unmatched disturbances, algebraic constraints and optimality}},
volume={75},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2016.09.008},
journal={Automatica},
publisher={Elsevier BV},
author={Monshizadeh, Nima and De Persis, Claudio},
year={2017},
pages={63--74}
}
References
- Aguirre, L. A., Rodrigues, D. D., Lima, S. T. & Martinez, C. B. Dynamical prediction and pattern mapping in short-term load forecasting. International Journal of Electrical Power & Energy Systems vol. 30 73–82 (2008) – 10.1016/j.ijepes.2007.11.001
- Arcak, M. Passivity as a Design Tool for Group Coordination. IEEE Transactions on Automatic Control vol. 52 1380–1390 (2007) – 10.1109/tac.2007.902733
- Bai, (2011)
- Bergen, A. R. & Hill, D. J. A Structure Preserving Model for Power System Stability Analysis. IEEE Transactions on Power Apparatus and Systems vol. PAS-100 25–35 (1981) – 10.1109/tpas.1981.316883
- Bürger, M. & De Persis, C. Dynamic coupling design for nonlinear output agreement and time-varying flow control. Automatica vol. 51 210–222 (2015) – 10.1016/j.automatica.2014.10.081
- Bürger, M., Zelazo, D. & Allgöwer, F. Duality and network theory in passivity-based cooperative control. Automatica vol. 50 2051–2061 (2014) – 10.1016/j.automatica.2014.06.002
- De Persis, C. Balancing time-varying demand-supply in distribution networks: An internal model approach. 2013 European Control Conference (ECC) 748–753 (2013) doi:10.23919/ecc.2013.6669480 – 10.23919/ecc.2013.6669480
- Dörfler, F. & Bullo, F. Synchronization in complex networks of phase oscillators: A survey. Automatica vol. 50 1539–1564 (2014) – 10.1016/j.automatica.2014.04.012
- Dörfler, F., Chertkov, M. & Bullo, F. Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences vol. 110 2005–2010 (2013) – 10.1073/pnas.1212134110
- Falnes, J. A review of wave-energy extraction. Marine Structures vol. 20 185–201 (2007) – 10.1016/j.marstruc.2007.09.001
- Jayawardhana, B., Ortega, R., García-Canseco, E. & Castaños, F. Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits. Systems & Control Letters vol. 56 618–622 (2007) – 10.1016/j.sysconle.2007.03.011
- Kokotovic, P. V., O’Malley, R. E., Jr. & Sannuti, P. Singular perturbations and order reduction in control theory — An overview. Automatica vol. 12 123–132 (1976) – 10.1016/0005-1098(76)90076-5
- Zhongkui Li, Zhisheng Duan, Guanrong Chen & Lin Huang. Consensus of Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 57 213–224 (2010) – 10.1109/tcsi.2009.2023937
- Machowski, (2011)
- Milan, P., Wächter, M. & Peinke, J. Turbulent Character of Wind Energy. Physical Review Letters vol. 110 (2013) – 10.1103/physrevlett.110.138701
- Olfati-Saber, R., Fax, J. A. & Murray, R. M. Consensus and Cooperation in Networked Multi-Agent Systems. Proceedings of the IEEE vol. 95 215–233 (2007) – 10.1109/jproc.2006.887293
- Ortega, R. & Romero, J. G. Robust integral control of port-Hamiltonian systems: The case of non-passive outputs with unmatched disturbances. Systems & Control Letters vol. 61 11–17 (2012) – 10.1016/j.sysconle.2011.09.015
- Pavlov, A. & Marconi, L. Incremental passivity and output regulation. Systems & Control Letters vol. 57 400–409 (2008) – 10.1016/j.sysconle.2007.10.008
- Sauer, (1998)
- Simpson-Porco, J. W., Dörfler, F. & Bullo, F. Synchronization and power sharing for droop-controlled inverters in islanded microgrids. Automatica vol. 49 2603–2611 (2013) – 10.1016/j.automatica.2013.05.018
- Stan, G.-B. & Sepulchre, R. Analysis of Interconnected Oscillators by Dissipativity Theory. IEEE Transactions on Automatic Control vol. 52 256–270 (2007) – 10.1109/tac.2006.890471
- Trentelman, H. L., Takaba, K. & Monshizadeh, N. Robust Synchronization of Uncertain Linear Multi-Agent Systems. IEEE Transactions on Automatic Control vol. 58 1511–1523 (2013) – 10.1109/tac.2013.2239011
- Trip, S., Bürger, M. & De Persis, C. An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages. Automatica vol. 64 240–253 (2016) – 10.1016/j.automatica.2015.11.021
- Tsitsiklis, J., Bertsekas, D. & Athans, M. Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Transactions on Automatic Control vol. 31 803–812 (1986) – 10.1109/tac.1986.1104412
- Van der Hoven, I. POWER SPECTRUM OF HORIZONTAL WIND SPEED IN THE FREQUENCY RANGE FROM 0.0007 TO 900 CYCLES PER HOUR. Journal of Meteorology vol. 14 160–164 (1957) – 10.1175/1520-0469(1957)014<0160:psohws>2.0.co;2
- van der Schaft, (2014)
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Wieland, P., Sepulchre, R. & Allgöwer, F. An internal model principle is necessary and sufficient for linear output synchronization. Automatica vol. 47 1068–1074 (2011) – 10.1016/j.automatica.2011.01.081
- Wieland, P., Wu, J. & Allgower, F. On Synchronous Steady States and Internal Models of Diffusively Coupled Systems. IEEE Transactions on Automatic Control vol. 58 2591–2602 (2013) – 10.1109/tac.2013.2266868
- Zhao, Distributed frequency control for stability and economic dispatch in power networks. (2015)