Robust Port-Hamiltonian Output-Tracking Control of Cascaded Systems
Authors
Ian J. Willebeek-LeMair, Craig A. Woolsey
Abstract
This paper addresses the robust output-tracking problem for a class of cascaded nonlinear systems subject to matched and unmatched time-varying disturbances. The proposed control synthesis technique operates by transforming the cascaded open-loop system into a port-Hamiltonian closed-loop system via feedback and a change of coordinates. The closed-loop port-Hamiltonian structure is physically interpretable. To add robustness, sufficient conditions for input-to-state stability of the closed-loop system with respect to the disturbances are identified. The method is illustrated in an example.
Citation
- Journal: 2025 IEEE 64th Conference on Decision and Control (CDC)
- Year: 2025
- Volume:
- Issue:
- Pages: 1747–1754
- Publisher: IEEE
- DOI: 10.1109/cdc57313.2025.11312051
BibTeX
@inproceedings{Willebeek_LeMair_2025,
title={{Robust Port-Hamiltonian Output-Tracking Control of Cascaded Systems}},
DOI={10.1109/cdc57313.2025.11312051},
booktitle={{2025 IEEE 64th Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Willebeek-LeMair, Ian J. and Woolsey, Craig A.},
year={2025},
pages={1747--1754}
}References
- Ortega R, García-Canseco E (2004) Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10(5):432–450. https://doi.org/10.3166/ejc.10.432-45 – 10.3166/ejc.10.432-450
- Fujimoto K, Sakurama K, Sugie T (2003) Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39(12):2059–2069. https://doi.org/10.1016/j.automatica.2003.07.00 – 10.1016/j.automatica.2003.07.005
- Donaire A, Mehra R, Ortega R, Satpute S, Romero JG, Kazi F, Singh NM (2016) Shaping the Energy of Mechanical Systems Without Solving Partial Differential Equations. IEEE Trans Automat Contr 61(4):1051–1056. https://doi.org/10.1109/tac.2015.245809 – 10.1109/tac.2015.2458091
- Borja P, Cisneros R, Ortega R (2016) A constructive procedure for energy shaping of port—Hamiltonian systems. Automatica 72:230–234. https://doi.org/10.1016/j.automatica.2016.05.02 – 10.1016/j.automatica.2016.05.028
- Del-Rio-Rivera F, Ramirez-Rivera VM, Donaire A, Ferguson J (2020) Robust Trajectory Tracking Control for Fully Actuated Marine Surface Vehicle. IEEE Access 8:223897–223904. https://doi.org/10.1109/access.2020.304209 – 10.1109/access.2020.3042091
- Donaire A, Perez T (2010) Port-Hamiltonian Theory of Motion Control for Marine Craft. IFAC Proceedings Volumes 43(20):201–206. https://doi.org/10.3182/20100915-3-de-3008.0005 – 10.3182/20100915-3-de-3008.00054
- Ortega R, Romero JG (2012) Robust integral control of port-Hamiltonian systems: The case of non-passive outputs with unmatched disturbances. Systems & Control Letters 61(1):11–17. https://doi.org/10.1016/j.sysconle.2011.09.01 – 10.1016/j.sysconle.2011.09.015
- Donaire A, Romero JG, Ortega R, Siciliano B, Crespo M (2016) Robust IDA-PBC for underactuated mechanical systems subject to matched disturbances. Int J Robust Nonlinear Control 27(6):1000–1016. https://doi.org/10.1002/rnc.361 – 10.1002/rnc.3615
- Franco E, Arpenti P, Donaire A, Ruggiero F (2024) Integral IDA-PBC for Underactuated Mechanical Systems Subject to Matched and Unmatched Disturbances. IEEE Control Syst Lett 8:568–573. https://doi.org/10.1109/lcsys.2024.339947 – 10.1109/lcsys.2024.3399474
- Willebeek-LeMair I, Widman SB, Woolsey CA (2025) Input-to-State Stable Energy-Based Position Tracking Control for Atmospheric Flight Vehicles. AIAA SCITECH 2025 Foru – 10.2514/6.2025-2594
- Mironchenko A (2023) Input-to-State Stability. Springer International Publishin – 10.1007/978-3-031-14674-9
- Krstić, Nonlinear and Adaptive Control Design (1995)
- Freeman RA, Kokotović P (1996) Robust Nonlinear Control Design. Birkhäuser Bosto – 10.1007/978-0-8176-4759-9
- Yaghmaei A, Yazdanpanah MJ (2017) Trajectory tracking for a class of contractive port Hamiltonian systems. Automatica 83:331–336. https://doi.org/10.1016/j.automatica.2017.06.03 – 10.1016/j.automatica.2017.06.039
- van der Schaft A (2017) L2-Gain and Passivity Techniques in Nonlinear Control. Springer International Publishin – 10.1007/978-3-319-49992-5
- Khalil, Nonlinear Systems (2002)
- Sontag E, Wang Y (2000) Lyapunov Characterizations of Input to Output Stability. SIAM J Control Optim 39(1):226–249. https://doi.org/10.1137/s036301299935021 – 10.1137/s0363012999350213
- Matni N, Ames AD, Doyle JC (2024) A Quantitative Framework for Layered Multirate Control: Toward a Theory of Control Architecture. IEEE Control Syst 44(3):52–94. https://doi.org/10.1109/mcs.2024.338238 – 10.1109/mcs.2024.3382388
- Nonlinear Control Systems. SpringerReferenc – 10.1007/springerreference_117570