Projected Dynamics of Constrained Hamiltonian Systems
Authors
Dmitry Gromov, Fetnando Castanos, Alexander L. Fradkov
Abstract
A novel formulation for the description of implicit port-Hamiltonian control systems is proposed and its potential use for the design of the control laws stabilizing a given submanifold described as a zero level set of an admissible energy function is shown. Using the developed formulation, a number of results on the stabilization of port-Hamiltonian systems are presented. The obtained results are formulated in a way that allows for direct application.
Citation
- Journal: 2018 European Control Conference (ECC)
- Year: 2018
- Volume:
- Issue:
- Pages: 1–5
- Publisher: IEEE
- DOI: 10.23919/ecc.2018.8550130
BibTeX
@inproceedings{Gromov_2018,
title={{Projected Dynamics of Constrained Hamiltonian Systems}},
DOI={10.23919/ecc.2018.8550130},
booktitle={{2018 European Control Conference (ECC)}},
publisher={IEEE},
author={Gromov, Dmitry and Castanos, Fetnando and Fradkov, Alexander L.},
year={2018},
pages={1--5}
}
References
- ortega, Putting energy back in control. IEEE Control Syst Mag (2001)
- Castaños, F. & Gromov, D. Passivity-based control of implicit port-Hamiltonian systems with holonomic constraints. Systems & Control Letters 94, 11–18 (2016) – 10.1016/j.sysconle.2016.04.004
- Shiriaev, A., Freidovich, L., Robertsson, A. & Johansson, R. Virtual-Constraints-Based Design of Stable Oscillations of Furuta Pendulum: Theory and Experiments. Proceedings of the 45th IEEE Conference on Decision and Control 6144–6149 (2006) doi:10.1109/cdc.2006.376850 – 10.1109/cdc.2006.376850
- Maggiore, M. & Consolini, L. Virtual Holonomic Constraints for Euler–Lagrange Systems. IEEE Trans. Automat. Contr. 58, 1001–1008 (2013) – 10.1109/tac.2012.2215538
- FRADKOV, A. L. Swinging control of nonlinear oscillations. International Journal of Control 64, 1189–1202 (1996) – 10.1080/00207179608921682
- Spong, M. W. & Praly, L. Control of underactuated mechanical systems using switching and saturation. Lecture Notes in Control and Information Sciences 162–172 doi:10.1007/bfb0036093 – 10.1007/bfb0036093
- Åström, K. J. & Furuta, K. Swinging up a pendulum by energy control. Automatica 36, 287–295 (2000) – 10.1016/s0005-1098(99)00140-5
- Shiriaev, A. S., Egeland, O., Ludvigsen, H. & Fradkov, A. L. VSS-version of energy-based control for swinging up a pendulum. Systems & Control Letters 44, 45–56 (2001) – 10.1016/s0167-6911(01)00124-4
- andrievskii, Control of nonlinear oscillations of mechanical systems by method of speed gradient. Automation and Remote Control (1996)
- Shiriaev, A., Pogromsky, A., Ludvigsen, H. & Egeland, O. On global properties of passivity-based control of an inverted pendulum. Int. J. Robust Nonlinear Control 10, 283–300 (2000) – 10.1002/(sici)1099-1239(20000415)10:4<283::aid-rnc473>3.3.co;2-9
- Öttinger, H. C. Beyond Equilibrium Thermodynamics. (2005) doi:10.1002/0471727903 – 10.1002/0471727903
- Blankenstein, G. Geometric modeling of nonlinear RLC circuits. IEEE Trans. Circuits Syst. I 52, 396–404 (2005) – 10.1109/tcsi.2004.840481
- neimark, Dynamics of nonholonomic systems. Journal of the American Mathematical Society (1972)
- Sandberg, H., Delvenne, J.-C. & Doyle, J. C. On Lossless Approximations, the Fluctuation- Dissipation Theorem, and Limitations of Measurements. IEEE Trans. Automat. Contr. 56, 293–308 (2011) – 10.1109/tac.2010.2056450
- Castaños, F., Gromov, D., Hayward, V. & Michalska, H. Implicit and explicit representations of continuous-time port-Hamiltonian systems. Systems & Control Letters 62, 324–330 (2013) – 10.1016/j.sysconle.2013.01.007
- maschke, Port-controlled hamiltonian systems: Modelling origins and system-theoretic properties. Proc 2nd IFAC NOLCOS (1992)
- Maschke, B. M., van der Schaft, A. J. & Breedveld, P. C. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Trans. Circuits Syst. I 42, 73–82 (1995) – 10.1109/81.372847
- Arnold, V. I., Kozlov, V. V. & Neishtadt, A. I. Mathematical Aspects of Classical and Celestial Mechanics. Encyclopaedia of Mathematical Sciences (Springer Berlin Heidelberg, 2006). doi:10.1007/978-3-540-48926-9 – 10.1007/978-3-540-48926-9
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Fantoni, I. & Lozano, R. Non-Linear Control for Underactuated Mechanical Systems. Communications and Control Engineering (Springer London, 2002). doi:10.1007/978-1-4471-0177-2 – 10.1007/978-1-4471-0177-2
- Dolgopolik, M. V. & Fradkov, A. L. Nonsmooth and discontinuous speed-gradient algorithms. Nonlinear Analysis: Hybrid Systems 25, 99–113 (2017) – 10.1016/j.nahs.2017.03.005