Power System Stabilization Using Energy-Dissipating Hybrid Control
Authors
Abstract
A new energy-dissipating hybrid control framework is proposed in this paper. The proposed framework incorporates a plant with continuous dynamics connected in parallel with a hybrid controller that combines logical switches with continuous dynamics. The overall closed-loop system can be described as a hybrid impulsive dynamical system in which the redundant energy preserved in the plant can be damped quickly and continuously due to the enhanced dissipativity of the closed-loop system. The proposed framework is applied to design decentralized nonlinear excitation controllers for synchronous generators in a multimachine system to improve its transient stability, in which the synchronous generators are modeled as port-controlled Hamiltonian systems. Simulation studies on the IEEE 10-generator, 39-bus New England power system are carried out to verify the effectiveness of the proposed energy-dissipating hybrid excitation control to improve the transient stability and dissipativity of the interconnected power system under various fault conditions.
Citation
- Journal: IEEE Transactions on Power Systems
- Year: 2019
- Volume: 34
- Issue: 1
- Pages: 215–224
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tpwrs.2018.2866839
BibTeX
@article{Zhang_2019,
title={{Power System Stabilization Using Energy-Dissipating Hybrid Control}},
volume={34},
ISSN={1558-0679},
DOI={10.1109/tpwrs.2018.2866839},
number={1},
journal={IEEE Transactions on Power Systems},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Zhang, Zhe and Qiao, Wei and Hui, Qing},
year={2019},
pages={215--224}
}
References
- Gurrala, G. & Sen, I. Power System Stabilizers Design for Interconnected Power Systems. IEEE Trans. Power Syst. 25, 1042–1051 (2010) – 10.1109/tpwrs.2009.2036778
- qiao, Energy-based hybrid excitation control for synchronous generators. Proc IEEE Power Energy Soc Gen Meeting (0)
- Machowski, J., Robak, S., Bialek, J. W., Bumby, J. R. & Abi-Samra, N. Decentralized stability-enhancing control of synchronous generator. IEEE Trans. Power Syst. 15, 1336–1344 (2000) – 10.1109/59.898110
- Guoxiao Guo, Youyi Wang & Hill, D. J. Nonlinear output stabilization control for multimachine power systems. IEEE Trans. Circuits Syst. I 47, 46–53 (2000) – 10.1109/81.817388
- Zecevic, A. I., Neskovic, G. & Siljak, D. D. Robust Decentralized Exciter Control With Linear Feedback. IEEE Trans. Power Syst. 19, 1096–1103 (2004) – 10.1109/tpwrs.2004.825829
- Mahmud, M. A., Pota, H. R., Aldeen, M. & Hossain, M. J. Partial Feedback Linearizing Excitation Controller for Multimachine Power Systems to Improve Transient Stability. IEEE Trans. Power Syst. 29, 561–571 (2014) – 10.1109/tpwrs.2013.2283867
- Mehraeen, S., Jagannathan, S. & Crow, M. L. Power System Stabilization Using Adaptive Neural Network-Based Dynamic Surface Control. IEEE Trans. Power Syst. 26, 669–680 (2011) – 10.1109/tpwrs.2010.2059717
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Zairong Xi, Feng, G., Daizhan Cheng & Qiang Lu. Nonlinear decentralized saturated controller design for power systems. IEEE Trans. Contr. Syst. Technol. 11, 539–547 (2003) – 10.1109/tcst.2003.813404
- Dysko, A., Leithead, W. E. & O’Reilly, J. Enhanced Power System Stability by Coordinated PSS Design. IEEE Trans. Power Syst. 25, 413–422 (2010) – 10.1109/tpwrs.2009.2036704
- Wu, Y., Musavi, M. & Lerley, P. Synchrophasor-Based Monitoring of Critical Generator Buses for Transient Stability. IEEE Trans. Power Syst. 31, 287–295 (2016) – 10.1109/tpwrs.2015.2395955
- rogers, Power System Oscillations (2012)
- Vittal, V. Consequence and impact of electric utility industry restructuring on transient stability and small-signal stability analysis. Proc. IEEE 88, 196–207 (2000) – 10.1109/5.823998
- Lu, Q., Sun, Y., Xu, Z. & Mochizuki, T. Decentralized nonlinear optimal excitation control. IEEE Trans. Power Syst. 11, 1957–1962 (1996) – 10.1109/59.544670
- Taylor, C. W. & Erickson, D. C. Recording and analyzing the July 2 cascading outage [Western USA power system]. IEEE Comput. Appl. Power 10, 26–30 (1997) – 10.1109/67.560830
- fouad, Power System Transient Stability Analysis Using the Transient Energy Function Method (1991)
- Kundur, P., Klein, M., Rogers, G. J. & Zywno, M. S. Application of power system stabilizers for enhancement of overall system stability. IEEE Trans. Power Syst. 4, 614–626 (1989) – 10.1109/59.193836
- Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. IEEE Trans. Power Syst. 19, 1387–1401 (2004) – 10.1109/tpwrs.2004.825981
- Yuzhen Wang, Daizhan Cheng, Chunwen Li & You Ge. Dissipative hamiltonian realization and energy-based L/sub 2/-disturbance attenuation control of multimachine power systems. IEEE Trans. Automat. Contr. 48, 1428–1433 (2003) – 10.1109/tac.2003.815037
- Haddad, W. M., Chellaboina, V., Hui, Q. & Nersesov, S. G. Energy- and Entropy-Based Stabilization for Lossless Dynamical Systems via Hybrid Controllers. IEEE Trans. Automat. Contr. 52, 1604–1614 (2007) – 10.1109/tac.2007.904452
- Mei, S., Shen, T., Hu, W., Lu, Q. & Sun, L. Robus control of a Hamiltonian system with uncertainty and its application to a multi-machine power system. IEE Proc., Control Theory Appl. 152, 202–210 (2005) – 10.1049/ip-cta:20041121
- Pai, M. A. Energy Function Analysis for Power System Stability. (Springer US, 1989). doi:10.1007/978-1-4613-1635-0 – 10.1007/978-1-4613-1635-0
- Kishimoto, Y. & Bernstein, D. S. Thermodynamic Modeling of Interconnected Systems: Conservative Coupling. 1993 American Control Conference 2050–2054 (1993) doi:10.23919/acc.1993.4793241 – 10.23919/acc.1993.4793241
- ramos, (0)