Position Control of Dielectric Elastomer Actuators Based on Port-Hamiltonian Framework
Authors
Giuseppe Panaro, Gianluca Rizzello, David Naso, Stefan Seelecke
Abstract
This paper deals with position control of an actuator system consisting of a dielectric elastomer membrane biased with a combination of a linear and a bi-stable spring. The highly nonlinear response of dielectric elastomer material, in conjunction with the bi-stable biasing spring, makes the control of the overall system challenging. To systematically address the design of the control system, a novel approach is proposed based on port-Hamiltonian (PH) theory. First, based on a recently developed PH model of the dielectric elastomer material, a PH model of the overall actuator system is obtained. Subsequently, several control laws are designed by means of PH theory, i.e., interconnection and damping assignment passivity-based control (IDA-PBC), and IDA-PBC with integral of non-passive output for robust regulation. The developed control laws are finally compared with a conventional PID, showing improved dynamic performance in the overall actuation range.
Citation
- Journal: 2018 IEEE Conference on Decision and Control (CDC)
- Year: 2018
- Volume:
- Issue:
- Pages: 6888–6893
- Publisher: IEEE
- DOI: 10.1109/cdc.2018.8619077
BibTeX
@inproceedings{Panaro_2018,
title={{Position Control of Dielectric Elastomer Actuators Based on Port-Hamiltonian Framework}},
DOI={10.1109/cdc.2018.8619077},
booktitle={{2018 IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Panaro, Giuseppe and Rizzello, Gianluca and Naso, David and Seelecke, Stefan},
year={2018},
pages={6888--6893}
}
References
- Ye, Z., Chen, Z., Asmatulu, R. & Chan, H. Robust control of dielectric elastomer diaphragm actuator for human pulse signal tracking. Smart Mater. Struct. 26, 085043 (2017) – 10.1088/1361-665x/aa75f7
- Wilson, E. D. et al. Cerebellar-inspired algorithm for adaptive control of nonlinear dielectric elastomer-based artificial muscle. J. R. Soc. Interface. 13, 20160547 (2016) – 10.1098/rsif.2016.0547
- Hoffstadt, T. & Maas, J. Adaptive Sliding-Mode Position Control for Dielectric Elastomer Actuators. IEEE/ASME Trans. Mechatron. 22, 2241–2251 (2017) – 10.1109/tmech.2017.2730589
- Suo, Z. Theory of dielectric elastomers. Acta Mechanica Solida Sinica 23, 549–578 (2010) – 10.1016/s0894-9166(11)60004-9
- Rizzello, G., Naso, D. & Seelecke, S. A Thermodynamically Consistent Port-Hamiltonian Model for Dielectric Elastomer Membrane Actuators and Generators. IFAC-PapersOnLine 50, 4855–4862 (2017) – 10.1016/j.ifacol.2017.08.974
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Rizzello, G., Hodgins, M., Naso, D., York, A. & Seelecke, S. Modeling of the effects of the electrical dynamics on the electromechanical response of a DEAP circular actuator with a mass–spring load. Smart Mater. Struct. 24, 094003 (2015) – 10.1088/0964-1726/24/9/094003
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Kelly, R. PD Control with Desired Gravity Compensation of Robotic Manipulators. The International Journal of Robotics Research 16, 660–672 (1997) – 10.1177/027836499701600505
- ferguson, New results on disturbance rejection for energy-shaping controlled port-Hamiltonian systems (2017)
- Wingert, A., Lichter, M. D., Dubowsky, S. & Hafez, M. <title>Hyper-redundant robot manipulators actuated by optimized binary-dielectric polymers</title> SPIE Proceedings vol. 4695 415–423 (2002) – 10.1117/12.475189
- Huu Nguyen, C., Alici, G. & Mutlu, R. A Compliant Translational Mechanism Based on Dielectric Elastomer Actuators. Journal of Mechanical Design 136, (2014) – 10.1115/1.4027167
- Heydt, R., Kornbluh, R., Eckerle, J. & Pelrine, R. Sound radiation properties of dielectric elastomer electroactive polymer loudspeakers. SPIE Proceedings (2006) doi:10.1117/12.659700 – 10.1117/12.659700
- Nguyen, C. T., Phung, H., Nguyen, T. D., Jung, H. & Choi, H. R. Multiple-degrees-of-freedom dielectric elastomer actuators for soft printable hexapod robot. Sensors and Actuators A: Physical 267, 505–516 (2017) – 10.1016/j.sna.2017.10.010
- Yun, K. & Kim, W. Microscale position control of an electroactive polymer using an anti-windup scheme. Smart Mater. Struct. 15, 924–930 (2006) – 10.1088/0964-1726/15/4/004
- Zou, J., Gu, G.-Y. & Zhu, L.-M. Open-Loop Control of Creep and Vibration in Dielectric Elastomer Actuators With Phenomenological Models. IEEE/ASME Trans. Mechatron. 22, 51–58 (2017) – 10.1109/tmech.2016.2591069
- Giousouf, M. & Kovacs, G. Dielectric elastomer actuators used for pneumatic valve technology. Smart Mater. Struct. 22, 104010 (2013) – 10.1088/0964-1726/22/10/104010
- carpi, Dielectric Elastomers As Electromechanical Transducers Fundamentals Materials Devices Models and Applications of An Emerging Electroactive Polymer Technology (2008)
- Rizzello, G., Naso, D., Turchiano, B. & Seelecke, S. Robust Position Control of Dielectric Elastomer Actuators Based on LMI Optimization. IEEE Trans. Contr. Syst. Technol. 24, 1909–1921 (2016) – 10.1109/tcst.2016.2519839