Port-Hamiltonian systems with energy and power ports
Authors
Kaja Krhač, Bernhard Maschke, Arjan van der Schaft
Abstract
We extend the port-Hamiltonian framework defined with respect to a Lagrangian submanifold and a Dirac structure by augmenting the Lagrangian submanifold with the space of external variables. The new pair of conjugated variables is called energy port. We show that in the most general case, the extension describes constrained Hamiltonian systems whose Hamiltonian function depends on inputs.
Keywords
Port-Hamiltonian systems; constrained Hamiltonian systems; input-output systems; Morse families; Lagrangian submanifolds
Citation
- Journal: IFAC-PapersOnLine
- Year: 2024
- Volume: 58
- Issue: 6
- Pages: 280–285
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2024.08.294
- Note: 8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2024- Besançon, France, June 10 – 12, 2024
BibTeX
@article{Krha__2024,
title={{Port-Hamiltonian systems with energy and power ports}},
volume={58},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2024.08.294},
number={6},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Krhač, Kaja and Maschke, Bernhard and van der Schaft, Arjan},
year={2024},
pages={280--285}
}
References
- Brockett, (1977)
- Cardin, (2014)
- Dirac, (2001)
- Hörmander, L. Fourier integral operators. I. Acta Mathematica vol. 127 79–183 (1971) – 10.1007/bf02392052
- Libermann, (1989)
- van der Schaft, A. & Mehrmann, V. Linear Port-Hamiltonian DAE Systems Revisited. SSRN Electronic Journal (2022) doi:10.2139/ssrn.4292998 – 10.2139/ssrn.4292998
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Pons, J. M. On Dirac’s incomplete analysis of gauge transformations. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics vol. 36 491–518 (2005) – 10.1016/j.shpsb.2005.04.004
- van der Schaft, (2014)
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- van der Schaft, A. & Maschke, B. Dirac and Lagrange Algebraic Constraints in Nonlinear Port-Hamiltonian Systems. Vietnam Journal of Mathematics vol. 48 929–939 (2020) – 10.1007/s10013-020-00419-x
- Weinstein, A. Lectures on Symplectic Manifolds. CBMS Regional Conference Series in Mathematics (1977) doi:10.1090/cbms/029 – 10.1090/cbms/029