Authors

Fernando Sanhueza, Francisco Vargas, Hector Ramirez, Andrés Peters

Abstract

This paper deals with platooning modeling considering the force provoked by the air drag in each vehicle. The proposed model is derived using a port-Hamiltonian approach in order to ensure the passivity of the whole system. The relation between the desired platooning formation and its implication on the air drag effect is highlighted. Simulation results illustrate the effect of air drag on the platoon behavior. The results of this work could serve as a basis for a platooning control scheme that explicitly includes the air drag force, as a function of the desired inter-vehicle distance, in the control loop.

Keywords

Vehicle platooning; Aerodynamic drag; Port-Hamiltonian modeling

Citation

  • Journal: IFAC-PapersOnLine
  • Year: 2023
  • Volume: 56
  • Issue: 2
  • Pages: 3917–3922
  • Publisher: Elsevier BV
  • DOI: 10.1016/j.ifacol.2023.10.1327
  • Note: 22nd IFAC World Congress- Yokohama, Japan, July 9-14, 2023

BibTeX

@article{Sanhueza_2023,
  title={{Port Hamiltonian based model for platooning applications including air drag effects}},
  volume={56},
  ISSN={2405-8963},
  DOI={10.1016/j.ifacol.2023.10.1327},
  number={2},
  journal={IFAC-PapersOnLine},
  publisher={Elsevier BV},
  author={Sanhueza, Fernando and Vargas, Francisco and Ramirez, Hector and Peters, Andrés},
  year={2023},
  pages={3917--3922}
}

Download the bib file

References

  • Heavy-Duty Vehicle Platooning for Sustainable Freight Transportation: A Cooperative Method to Enhance Safety and Efficiency. IEEE Control Systems vol. 35 34–56 (2015) – 10.1109/mcs.2015.2471046
  • Azizi, A bidirectional dc-dc converter fed dc motor for electric vehicle application. (2015)
  • Barooah, Error amplification and disturbance propagation in vehicle strings with decentralized linear control. (2005)
  • Caiazzo, B., Coppola, A., Petrillo, A. & Santini, S. Distributed Nonlinear Model Predictive Control for Connected Autonomous Electric Vehicles Platoon with Distance-Dependent Air Drag Formulation. Energies vol. 14 5122 (2021) – 10.3390/en14165122
  • Cerutti, J. J., Cafiero, G. & Iuso, G. Aerodynamic drag reduction by means of platooning configurations of light commercial vehicles: A flow field analysis. International Journal of Heat and Fluid Flow vol. 90 108823 (2021) – 10.1016/j.ijheatfluidflow.2021.108823
  • Chien, Automatic vehicle-following. (1992)
  • Cook, P. A. Conditions for string stability. Systems & Control Letters vol. 54 991–998 (2005) – 10.1016/j.sysconle.2005.02.011
  • Deng, Q. A General Simulation Framework for Modeling and Analysis of Heavy-Duty Vehicle Platooning. IEEE Transactions on Intelligent Transportation Systems vol. 17 3252–3262 (2016) – 10.1109/tits.2016.2548502
  • Feng, S. et al. String stability for vehicular platoon control: Definitions and analysis methods. Annual Reviews in Control vol. 47 81–97 (2019) – 10.1016/j.arcontrol.2019.03.001
  • Ferguson, J., Donaire, A., Knorn, S. & Middleton, R. H. Decentralized control for l2 weak string stability of vehicle platoon. IFAC-PapersOnLine vol. 50 15012–15017 (2017) – 10.1016/j.ifacol.2017.08.2572
  • Gordon, M. A., Vargas, F. J. & Peters, A. A. Comparison of Simple Strategies for Vehicular Platooning With Lossy Communication. IEEE Access vol. 9 103996–104010 (2021) – 10.1109/access.2021.3099404
  • Gratzer, A. L., Thormann, S., Schirrer, A. & Jakubek, S. String Stable and Collision-Safe Model Predictive Platoon Control. IEEE Transactions on Intelligent Transportation Systems vol. 23 19358–19373 (2022) – 10.1109/tits.2022.3160236
  • Hussein, A. A. & Rakha, H. A. Vehicle Platooning Impact on Drag Coefficients and Energy/Fuel Saving Implications. IEEE Transactions on Vehicular Technology vol. 71 1199–1208 (2022) – 10.1109/tvt.2021.3131305
  • Khalil, (2002)
  • Knorn, S., Donaire, A., Agüero, J. C. & Middleton, R. H. Passivity-based control for multi-vehicle systems subject to string constraints. Automatica vol. 50 3224–3230 (2014)10.1016/j.automatica.2014.10.038
  • Liang, K.-Y., Martensson, J. & Johansson, K. H. Heavy-Duty Vehicle Platoon Formation for Fuel Efficiency. IEEE Transactions on Intelligent Transportation Systems vol. 17 1051–1061 (2016) – 10.1109/tits.2015.2492243
  • Liang, K.-Y., Mårtensson, J. & Johansson, K. H. When is it Fuel Efficient for a Heavy Duty Vehicle to Catch Up With a Platoon? IFAC Proceedings Volumes vol. 46 738–743 (2013) – 10.3182/20130904-4-jp-2042.00071
  • Lopes, Energy savings from an eco-cooperative adaptive cruise control: a bev platoon investigation. (2019)
  • Murillo, String stability of a pi-controlled vhicular platoon. (2021)
  • Naus, G. J. L., Vugts, R. P. A., Ploeg, J., van de Molengraft, M. J. G. & Steinbuch, M. String-Stable CACC Design and Experimental Validation: A Frequency-Domain Approach. IEEE Transactions on Vehicular Technology vol. 59 4268–4279 (2010) – 10.1109/tvt.2010.2076320
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002)10.1016/s0005-1098(01)00278-3
  • Peters, A. A., Middleton, R. H. & Mason, O. Leader tracking in homogeneous vehicle platoons with broadcast delays. Automatica vol. 50 64–74 (2014) – 10.1016/j.automatica.2013.09.034
  • Stüdli, S., Seron, M. M. & Middleton, R. H. From vehicular platoons to general networked systems: String stability and related concepts. Annual Reviews in Control vol. 44 157–172 (2017) – 10.1016/j.arcontrol.2017.09.016
  • Sujan, Heavy duty commercial vehicle platooning energy benefits for conventional and electrified powertrains. (2022)
  • Surcel, Influences on energy savings of heavy trucks using cooperative adaptive cruise control. (2018)
  • van der Schaft, (2000)