Port-based modeling of magnetohydrodynamics equations for Tokamaks
Authors
Abstract
This paper shows the port-representation of magnetohydrodynamics Tokamaks. The consists coupled two physical systems, i.e. Maxwell equations and ideal compressible isentropic fluids. coupling term is product free current density magnetic field induction. Port-Hamiltonian systems a control system representation based on passivity. can express connected multi-physical (e.g., electric mechanical fluid dissipative controllers). port-Hamiltonian has been extended as distributed by introducing Stokes-Dirac structure. structure directly relates to boundary integrability Stokes theorem. Therefore, energy problems, because we observe integrable energies in internal domains from boundaries. Our present interest clarify counter part Lagrangian side. will provide us more general framework variational structures.
Citation
- Journal: 2010 IEEE International Conference on Control Applications
- Year: 2010
- Volume:
- Issue:
- Pages: 842–847
- Publisher: IEEE
- DOI: 10.1109/cca.2010.5611289
BibTeX
@inproceedings{Nishida_2010,
title={{Port-based modeling of magnetohydrodynamics equations for Tokamaks}},
DOI={10.1109/cca.2010.5611289},
booktitle={{2010 IEEE International Conference on Control Applications}},
publisher={IEEE},
author={Nishida, Gou and Sakamoto, Noboru},
year={2010},
pages={842--847}
}References
- khalil, Nonlinear Systems (2001)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Gou Nishida & Yamakita, M. Formal Distributed Port-Hamiltonian Representation of Field Equations. Proceedings of the 44th IEEE Conference on Decision and Control 6009–6015 doi:10.1109/cdc.2005.1583123 – 10.1109/cdc.2005.1583123
- Gou Nishida, Masaki Yamakita & Zhi-wei Luo. Field port-Lagrangian systems with degenerate Lagrangian and external forces. 2007 46th IEEE Conference on Decision and Control 6250–6255 (2007) doi:10.1109/cdc.2007.4434261 – 10.1109/cdc.2007.4434261
- Jeltsema, D. & Schaft, A. van der. Pseudo-gradient and Lagrangian boundary control system formulation of electromagnetic fields. J. Phys. A: Math. Theor. 40, 11627–11643 (2007) – 10.1088/1751-8113/40/38/013
- Jeltsema, D. & Van Der Schaft, A. J. Lagrangian and Hamiltonian formulation of transmission line systems with boundary energy flow. Reports on Mathematical Physics 63, 55–74 (2009) – 10.1016/s0034-4877(09)00009-3
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- Saunders, D. J. The Geometry of Jet Bundles. (1989) doi:10.1017/cbo9780511526411 – 10.1017/cbo9780511526411
- Pommaret, J.-F. Partial Differential Control Theory. (Springer Netherlands, 2001). doi:10.1007/978-94-010-0854-9 – 10.1007/978-94-010-0854-9
- Giachetta, G., Mangiarotti, L. & Sardanashvily, G. New Lagrangian and Hamiltonian Methods in Field Theory. (1997) doi:10.1142/2199 – 10.1142/2199
- Magnetic control of plasma current, position, and shape in Tokamaks: a survey or modeling and control approaches. IEEE Control Syst. 25, 76–92 (2005) – 10.1109/mcs.2005.1512797
- Fusion, tokamaks, and plasma control: an introduction and tutorial. IEEE Control Syst. 25, 30–43 (2005) – 10.1109/mcs.2005.1512794
- brogliato, Dissipative Systems Analysis and Control Theory and Applications (2006)
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Takegaki, M. & Arimoto, S. A New Feedback Method for Dynamic Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control 103, 119–125 (1981) – 10.1115/1.3139651
- Stramigioli, S. Geometric modeling of mechanical systems for interactive control. Lecture Notes in Control and Information Sciences 309–332 doi:10.1007/bfb0110389 – 10.1007/bfb0110389
- ariola, Magnetic Control of Tokamak Plasmas (2008)
- Arimoto, S. Control Theory of Non-Linear Mechanical Systems. (Oxford University PressOxford, 1996). doi:10.1093/oso/9780198562917.001.0001 – 10.1093/oso/9780198562917.001.0001
- wesson, Tokamaks (2004)
- ferraris, On the Global Structure of Lagrangian and Hamiltonian Formalisms in Higher Order Calculus of Variations. Proc of the meeting Geometry and Physics (0)
- Morita, S. Geometry of Differential Forms. Translations of Mathematica Monographs (2001) doi:10.1090/mmono/201 – 10.1090/mmono/201
- Anderson, I. M. Introduction to the variational bicomplex. Contemporary Mathematics 51–73 (1992) doi:10.1090/conm/132/1188434 – 10.1090/conm/132/1188434
- steenrod, The Topology of Fibre Bundles (1972)
- flanders, Differential Forms with Applications to the Physical Sciences (1989)
- abraham, Foundations of Mechanics (2008)