Plug-and-Play Physics-Informed Learning Using Uncertainty Quantified Port-Hamiltonian Models
Authors
Kaiyuan Tan, Peilun Li, Jun Wang, Thomas Beckers
Abstract
No available
Citation
- Journal: 2025 IEEE International Conference on Robotics and Automation (ICRA)
- Year: 2025
- Volume:
- Issue:
- Pages: 10980–10986
- Publisher: IEEE
- DOI: 10.1109/icra55743.2025.11127683
BibTeX
@inproceedings{Tan_2025,
title={{Plug-and-Play Physics-Informed Learning Using Uncertainty Quantified Port-Hamiltonian Models}},
DOI={10.1109/icra55743.2025.11127683},
booktitle={{2025 IEEE International Conference on Robotics and Automation (ICRA)}},
publisher={IEEE},
author={Tan, Kaiyuan and Li, Peilun and Wang, Jun and Beckers, Thomas},
year={2025},
pages={10980--10986}
}
References
- Karabegović, I., Karabegović, E., Mahmić, M. & Husak, E. The application of service robots for logistics in manufacturing processes. Adv produc engineer manag 10, 185–194 (2015) – 10.14743/apem2015.4.201
- Vukobratovic, M. Robot-environment dynamic interaction survey and future trends. J. Comput. Syst. Sci. Int. 49, 329–342 (2010) – 10.1134/s1064230710020188
- Hassanein, A., Elhawary, M., Jaber, N. & El-Abd, M. An autonomous firefighting robot. 2015 International Conference on Advanced Robotics (ICAR) 530–535 (2015) doi:10.1109/icar.2015.7251507 – 10.1109/icar.2015.7251507
- Lydia, M., Suresh Kumar, S., Immanuel Selvakumar, A. & Edwin Prem Kumar, G. Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Conversion and Management 112, 115–124 (2016) – 10.1016/j.enconman.2016.01.007
- Wei, Z., Chen, W., Wang, H. & Wang, J. Manipulator motion planning using flexible obstacle avoidance based on model learning. International Journal of Advanced Robotic Systems 14, 172988141770393 (2017) – 10.1177/1729881417703930
- Long, Z., Lu, Y. & Dong, B. PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network. Journal of Computational Physics 399, 108925 (2019) – 10.1016/j.jcp.2019.108925
- Stephany, R. & Earls, C. PDE-READ: Human-readable partial differential equation discovery using deep learning. Neural Networks 154, 360–382 (2022) – 10.1016/j.neunet.2022.07.008
- Hou, Z.-S. & Wang, Z. From model-based control to data-driven control: Survey, classification and perspective. Information Sciences 235, 3–35 (2013) – 10.1016/j.ins.2012.07.014
- Zhang, Q., Hu, S., Sun, J., Chen, Q. A. & Mao, Z. M. On Adversarial Robustness of Trajectory Prediction for Autonomous Vehicles. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 15138–15147 (2022) doi:10.1109/cvpr52688.2022.01473 – 10.1109/cvpr52688.2022.01473
- Tan, Targeted adversarial attacks against neural network trajectory predictors. Learning for Dynamics and Control Conference. PMLR (2023)
- Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics 378, 686–707 (2019) – 10.1016/j.jcp.2018.10.045
- Si, C. & Yan, M. Initialization-enhanced physics-informed neural network with domain decomposition (IDPINN). Journal of Computational Physics 530, 113914 (2025) – 10.1016/j.jcp.2025.113914
- Nageshrao, S. P., Lopes, G. A. D., Jeltsema, D. & Babuska, R. Port-Hamiltonian Systems in Adaptive and Learning Control: A Survey. IEEE Trans. Automat. Contr. 61, 1223–1238 (2016) – 10.1109/tac.2015.2458491
- Duong, T. & Atanasov, N. Hamiltonian-based Neural ODE Networks on the SE(3) Manifold For Dynamics Learning and Control. Robotics: Science and Systems XVII (2021) doi:10.15607/rss.2021.xvii.086 – 10.15607/rss.2021.xvii.086
- Beckers, T., Seidman, J., Perdikaris, P. & Pappas, G. J. Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior. 2022 IEEE 61st Conference on Decision and Control (CDC) 1447–1453 (2022) doi:10.1109/cdc51059.2022.9992733 – 10.1109/cdc51059.2022.9992733
- Li, P., Tan, K. & Beckers, T. PyGpPHs: A Python Package for Bayesian Modeling of Port-Hamiltonian Systems. IFAC-PapersOnLine 58, 54–59 (2024) – 10.1016/j.ifacol.2024.08.256
- Tan, Physics-constrained learning for PDE systems with uncertainty quantified portHamiltonian models. 6th Annual Learning for Dynamics & Control Conference
- Angelopoulos, A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv preprint (2021)
- Zhao, Y., Hoxha, B., Fainekos, G., Deshmukh, J. V. & Lindemann, L. Robust Conformal Prediction for STL Runtime Verification under Distribution Shift. 2024 ACM/IEEE 15th International Conference on Cyber-Physical Systems (ICCPS) 169–179 (2024) doi:10.1109/iccps61052.2024.00022 – 10.1109/iccps61052.2024.00022
- Macchelli, A., van der Schaft, A. J. & Melchiorri, C. Port Hamiltonian formulation of infinite dimensional systems I. Modeling. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601) 3762-3767 Vol.4 (2004) doi:10.1109/cdc.2004.1429324 – 10.1109/cdc.2004.1429324
- Van der Schaft, L2-gain and passivity techniques in nonlinear control. Springer (2000)
- Jidling, Linearly constrained Gaussian processes. Advances in Neural Information Processing Systems (2017)