Authors

M. Magos, C. Valentin, B. Maschke

Abstract

this paper presents a systematic method, to obtain the hybrid Hamiltonian formulation of a class of linear switched systems (LSS). The advantages of this formulation are that the state of the switching part is explicit and the equations are directly related to the interconnection constraints and dissipation. The resulting port controlled Hamiltonian representation with dissipation is of course hybrid, including continuous and discrete variables. The network graph of the system gives its Dirac structure which is reduced in successive steps to obtain the Hamiltonian formulation.

Keywords

hybrid systems; non-regular systems; linear switched systems; modelling; dissipation; network graph; Hamiltonian formulation; Dirac structure

Citation

  • Journal: IFAC Proceedings Volumes
  • Year: 2003
  • Volume: 36
  • Issue: 6
  • Pages: 283–288
  • Publisher: Elsevier BV
  • DOI: 10.1016/s1474-6670(17)36445-5
  • Note: IFAC Conference on Analysis and Design of Hybrid Systems 2003, St Malo, Brittany, France, 16-18 June 2003

BibTeX

@article{Magos_2003,
  title={{Physical Switching Systems: From a Network Graph to a Hybrid Port Hamiltonian Formulation}},
  volume={36},
  ISSN={1474-6670},
  DOI={10.1016/s1474-6670(17)36445-5},
  number={6},
  journal={IFAC Proceedings Volumes},
  publisher={Elsevier BV},
  author={Magos, M. and Valentin, C. and Maschke, B.},
  year={2003},
  pages={283--288}
}

Download the bib file

References

  • Bernstein, G. M. & Lieberman, M. A. A method for obtaining a canonical Hamiltonian for nonlinear LC circuits. IEEE Trans. Circuits Syst. 36, 411–420 (1989) – 10.1109/31.17588
  • Bloch, Representation of Dirac structures on Vector Spaces and Nonlinear LC Circuits. (1999)
  • Buisson, J. Analysis of switching devices with bond graphs. Journal of the Franklin Institute 330, 1165–1175 (1993) – 10.1016/0016-0032(93)90070-b
  • Buisson, Ideal versus non-ideal approaches in bond graph modelling of switching devices: a comparison based on singular perturbation theory. International Conference on Automation of Mixed Processes, ADPM 2000 (2000)
  • Buisson, Modélisation bond graph des systèmes en commutation, application aux systèmes électriques. Journées Nationales d’Automatique. JNA2001 (2001)
  • Cormerais, Calcul symbolique de l’ensemble des équations d’état pour les bond graphs en commutation. Conférence Internationale Francophone d’Automatique. CIFA 2002 (2002)
  • Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990)10.1090/s0002-9947-1990-0998124-1
  • Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998)10.1137/s0363012996312039
  • Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica 35, 445–452 (1999) – 10.1016/s0005-1098(98)00196-4
  • Gerritsen, On switched Hamiltonian systems. Proceedings MTNS (2002)
  • Golo, (2002)
  • Jeltsema, Energy-Control of multi-switch power supplies an application to the three-phase buck rectifier with input filter. Proceedings of 32nd IEEE Power Electronics Specialists Conference PESC’01 (2001)
  • Karnopp, (1990)
  • Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute 329, 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
  • Maschke, B. M., van der Schaft, A. J. & Breedveld, P. C. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Trans. Circuits Syst. I 42, 73–82 (1995) – 10.1109/81.372847
  • Ortega, Putting energy back in control. IEEE. Control Systems Magazine (2001)
  • Paynter, (1961)
  • Recski, (1989)
  • Valentin-Roubinet, Hybrid dynamic systems verification with mixed Petri nets. ADPM2000 (2000)
  • Van der Schaft, The Hamiltonian formulation of energy conserving physical systems with ports. Archiv für Elektronik und Übertragungstechnik (1995)
  • Van der Schaft, Interconnected mechanical systems. Part I : Geometry of interconnection and implicit Hamiltonian systems. (1997)
  • Van der Schaft, Note on the dynamics of LC circuits with elements in excess. Memorandum. Faculty of Applied Mathematics of the University of Twente (1998)
  • Van der Schaft, (2000)
  • Zaytoon, (2001)