Authors

Oscar Danilo Montoya Giraldo, Alejandro Garcés Ruiz, Isaac Ortega Velázquez, Gerardo René Espinosa Pérez

Abstract

In this paper, a passivity-based control (PBC) theory is applied to control a battery energy storage system (BESS) under current control mode by employing a bidirectional buck-boost DC-DC converter. The proposed controller guarantees globally exponentially stability for the system under closed-loop conditions via proportional control design. An averaging model of the buck-boost DC-DC converter is employed to represent the dynamics of the system via port-Hamiltonian (pH) structure. Simulation results show that a unique control law can be used to the charging or discharging battery process. MATLAB/SIMULINK software is employed to validate the proposed control methodology.

Citation

  • Journal: 2018 IEEE Green Technologies Conference (GreenTech)
  • Year: 2018
  • Volume:
  • Issue:
  • Pages: 89–94
  • Publisher: IEEE
  • DOI: 10.1109/greentech.2018.00025

BibTeX

@inproceedings{Montoya_Giraldo_2018,
  title={{Passivity-Based Control for Battery Charging/Discharging Applications by Using a Buck-Boost DC-DC Converter}},
  DOI={10.1109/greentech.2018.00025},
  booktitle={{2018 IEEE Green Technologies Conference (GreenTech)}},
  publisher={IEEE},
  author={Montoya Giraldo, Oscar Danilo and Garcés Ruiz, Alejandro and Ortega Velázquez, Isaac and Espinosa Pérez, Gerardo René},
  year={2018},
  pages={89--94}
}

Download the bib file

References

  • Manwell, J. F. & McGowan, J. G. Lead acid battery storage model for hybrid energy systems. Solar Energy vol. 50 399–405 (1993) – 10.1016/0038-092x(93)90060-2
  • ogawa, Metal hydride electrode for high energy density sealed nickel-metal hydride battery. Power Sources 12 Research and Development in Non-Mechanical Electrical Power Sources (1988)
  • Lijun Gao, Shengyi Liu & Dougal, R. A. Dynamic lithium-ion battery model for system simulation. IEEE Transactions on Components and Packaging Technologies vol. 25 495–505 (2002) – 10.1109/tcapt.2002.803653
  • Salameh, Z. M., Casacca, M. A. & Lynch, W. A. A mathematical model for lead-acid batteries. IEEE Transactions on Energy Conversion vol. 7 93–98 (1992) – 10.1109/60.124547
  • Bock, S. A., Pinheiro, J. R., Grundling, H., Hey, H. L. & Pinheiro, H. Existence and stability of sliding modes in bi-directional DC-DC converters. 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230) vol. 3 1277–1282 – 10.1109/pesc.2001.954296
  • Tsai-Fu Wu, Chien-Hsuan Chang & Yu-Hai Chen. A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications. IEEE Transactions on Industrial Electronics vol. 47 287–296 (2000) – 10.1109/41.836344
  • Abedi, M., Song, B.-M. & Kim, R.-Y. Nonlinear-model predictive control based bidirectional converter for V2G battery charger applications. 2011 IEEE Vehicle Power and Propulsion Conference 1–6 (2011) doi:10.1109/vppc.2011.6043204 – 10.1109/vppc.2011.6043204
  • Mojallizadeh, M. R. & Badamchizadeh, M. A. Adaptive Passivity-Based Control of a Photovoltaic/Battery Hybrid Power Source via Algebraic Parameter Identification. IEEE Journal of Photovoltaics vol. 6 532–539 (2016) – 10.1109/jphotov.2016.2514715
  • saleh, Voltage Control DC/DC Bidirectional Converter. Simulink-Software. Matheworks File Exchange (2017)
  • Justo, J. J., Mwasilu, F., Lee, J. & Jung, J.-W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renewable and Sustainable Energy Reviews vol. 24 387–405 (2013) – 10.1016/j.rser.2013.03.067
  • Saleh, M., Esa, Y., Mhandi, Y., Brandauer, W. & Mohamed, A. Design and implementation of CCNY DC microgrid testbed. 2016 IEEE Industry Applications Society Annual Meeting 1–7 (2016) doi:10.1109/ias.2016.7731870 – 10.1109/ias.2016.7731870
  • Yang, Y., Ye, Q., Tung, L. J., Greenleaf, M. & Li, H. Integrated Size and Energy Management Design of Battery Storage to Enhance Grid Integration of Large-Scale PV Power Plants. IEEE Transactions on Industrial Electronics vol. 65 394–402 (2018) – 10.1109/tie.2017.2721878
  • Elliman, R., Gould, C. & Al-Tai, M. Review of current and future electrical energy storage devices. 2015 50th International Universities Power Engineering Conference (UPEC) 1–5 (2015) doi:10.1109/upec.2015.7339795 – 10.1109/upec.2015.7339795
  • Teodorescu, R., Liserre, M. & Rodríguez, P. Grid Converters for Photovoltaic and Wind Power Systems. (2010) doi:10.1002/9780470667057 – 10.1002/9780470667057
  • Hadjipaschalis, I., Poullikkas, A. & Efthimiou, V. Overview of current and future energy storage technologies for electric power applications. Renewable and Sustainable Energy Reviews vol. 13 1513–1522 (2009) – 10.1016/j.rser.2008.09.028
  • Parhizi, S., Lotfi, H., Khodaei, A. & Bahramirad, S. State of the Art in Research on Microgrids: A Review. IEEE Access vol. 3 890–925 (2015) – 10.1109/access.2015.2443119
  • Power Electronics in Smart Electrical Energy Networks. Power Systems (Springer London, 2008). doi:10.1007/978-1-84800-318-7 – 10.1007/978-1-84800-318-7
  • Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nature Materials vol. 11 19–29 (2011) – 10.1038/nmat3191