Passivity-Based Current Control of a Dual-Active Bridge to Improve the Dynamic Response of a Solid-State Transformer During Power and Voltage Variations
Authors
K. Lopez-Rodriguez, A. Escobar-Mejia, E.Y. Piedrahita-Echavarria, W. Gil-Gonzalez
Abstract
The interest for smart-grids has grown worldwide and several utilities have begun to base their plans for expansion and modernization considering this concept. New trends to get more efficient, compact, and reliable power semiconductor devices, have motivated the development of new components such as the Solid-State Transformer (SST), which has become the key technology to be used in smart-grid applications. These advantages can be exploited by regulating the power flow in the dual-active bridge (DAB) of the SST. In this context, this paper focuses on proposing a passivity-based current controller for the DAB of an SST that regulates the power flow considering the passive behavior of DAB model and its port-Hamiltonian structure, which guarantees stability in closed-loop operation. To validate the proposed approach’s effectiveness, the closed-loop system is tested under different power variations, including bi-directional power flow, and its performance is compared with a conventional PI controller. In addition, input voltage variations are also considered. Results validated the controller’s capability of maintaining constant power flow in the event of input disturbances.
Citation
- Journal: 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)
- Year: 2020
- Volume:
- Issue:
- Pages: 230–235
- Publisher: IEEE
- DOI: 10.1109/pedg48541.2020.9244412
BibTeX
@inproceedings{Lopez_Rodriguez_2020,
title={{Passivity-Based Current Control of a Dual-Active Bridge to Improve the Dynamic Response of a Solid-State Transformer During Power and Voltage Variations}},
DOI={10.1109/pedg48541.2020.9244412},
booktitle={{2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)}},
publisher={IEEE},
author={Lopez-Rodriguez, K. and Escobar-Mejia, A. and Piedrahita-Echavarria, E.Y. and Gil-Gonzalez, W.},
year={2020},
pages={230--235}
}
References
- Sprangers, O., Babuska, R., Nageshrao, S. P. & Lopes, G. A. D. Reinforcement Learning for Port-Hamiltonian Systems. IEEE Transactions on Cybernetics vol. 45 1017–1027 (2015) – 10.1109/tcyb.2014.2343194
- Tong, A., Hang, L., Li, G. & Huang, J. Nonlinear characteristics of DAB converter and linearized control method. 2018 IEEE Applied Power Electronics Conference and Exposition (APEC) 331–337 (2018) doi:10.1109/apec.2018.8341031 – 10.1109/apec.2018.8341031
- Zhang, K., Shan, Z. & Jatskevich, J. Large- and Small-Signal Average-Value Modeling of Dual-Active-Bridge DC–DC Converter Considering Power Losses. IEEE Transactions on Power Electronics vol. 32 1964–1974 (2017) – 10.1109/tpel.2016.2555929
- Khazraei, M., Prabhala, V. A. K., Ahmadi, R. & Ferdowsi, M. Solid-state transformer stability and control considerations. 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014 2237–2244 (2014) doi:10.1109/apec.2014.6803615 – 10.1109/apec.2014.6803615
- Ortiz, G., Leibl, M., Kolar, J. W. & Apeldoorn, O. Medium frequency transformers for solid-state-transformer applications — Design and experimental verification. 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS) 1285–1290 (2013) doi:10.1109/peds.2013.6527217 – 10.1109/peds.2013.6527217
- She, X., Yu, X., Wang, F. & Huang, A. Q. Design and Demonstration of a 3.6-kV–120-V/10-kVA Solid-State Transformer for Smart Grid Application. IEEE Transactions on Power Electronics vol. 29 3982–3996 (2014) – 10.1109/tpel.2013.2293471
- Zhao, T., Wang, G., Bhattacharya, S. & Huang, A. Q. Voltage and Power Balance Control for a Cascaded H-Bridge Converter-Based Solid-State Transformer. IEEE Transactions on Power Electronics vol. 28 1523–1532 (2013) – 10.1109/tpel.2012.2216549
- Yu, X., She, X., Huang, A. & Liu, L. Distributed power balance strategy for DC/DC converters in solid state transformer. 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014 989–994 (2014) doi:10.1109/apec.2014.6803428 – 10.1109/apec.2014.6803428
- Zhao, B., Song, Q., Liu, W., Liu, G. & Zhao, Y. Universal High-Frequency-Link Characterization and Practical Fundamental-Optimal Strategy for Dual-Active-Bridge DC-DC Converter Under PWM Plus Phase-Shift Control. IEEE Transactions on Power Electronics vol. 30 6488–6494 (2015) – 10.1109/tpel.2015.2430934
- Shi, Y., Li, R., Xue, Y. & Li, H. Optimized Operation of Current-Fed Dual Active Bridge DC–DC Converter for PV Applications. IEEE Transactions on Industrial Electronics vol. 62 6986–6995 (2015) – 10.1109/tie.2015.2432093
- Wang, L., Zhang, D., Wang, Y., Wu, B. & Athab, H. S. Power and Voltage Balance Control of a Novel Three-Phase Solid-State Transformer Using Multilevel Cascaded H-Bridge Inverters for Microgrid Applications. IEEE Transactions on Power Electronics vol. 31 3289–3301 (2016) – 10.1109/tpel.2015.2450756
- Facchinello, G. G., Brighenti, L. L., Brockveld, S. L., Martins, D. C. & Dos Santos, W. M. Closed-loop operation and control strategy for the Dual Active half Bridge AC-AC converter. 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG) 1–7 (2017) doi:10.1109/pedg.2017.7972531 – 10.1109/pedg.2017.7972531
- An, F., Song, W., Yu, B. & Yang, K. Model Predictive Control With Power Self-Balancing of the Output Parallel DAB DC–DC Converters in Power Electronic Traction Transformer. IEEE Journal of Emerging and Selected Topics in Power Electronics vol. 6 1806–1818 (2018) – 10.1109/jestpe.2018.2823364
- Montoya, O. D., Gil-Gonzalez, W. & Serra, F. M. PBC Approach for SMES Devices in Electric Distribution Networks. IEEE Transactions on Circuits and Systems II: Express Briefs vol. 65 2003–2007 (2018) – 10.1109/tcsii.2018.2805774
- Rugthaicharoencheep, N. & Boonthienthong, M. Smart grid for energy management on distribution system with distributed generation. 2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER) 165–169 (2012) doi:10.1109/cyber.2012.6392547 – 10.1109/cyber.2012.6392547
- Montoya, O. D., Gil-Gonzalez, W. & Garces, A. Control for EESS in Three-Phase Microgrids Under Time-Domain Reference Frame via PBC Theory. IEEE Transactions on Circuits and Systems II: Express Briefs vol. 66 2007–2011 (2019) – 10.1109/tcsii.2019.2893842
- Zhao, S., Meng, X. & Song, X. Increasing maximum penetration of distributed generation by voltage regulation in smart distribution grid. 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT) 1894–1898 (2015) doi:10.1109/drpt.2015.7432555 – 10.1109/drpt.2015.7432555
- Rodrigues, W. A. et al. Analysis of Solid State Transformer based microgrid system. 2016 12th IEEE International Conference on Industry Applications (INDUSCON) 1–6 (2016) doi:10.1109/induscon.2016.7874543 – 10.1109/induscon.2016.7874543
- Montoya, O. D., Campillo, J. E., Gil-Gonzalez, W. & Garces, A. Integration of PV Arrays in DC Power Grids via Unidirectional Boost Converters: a PBC Approach. 2018 IEEE 9th Power, Instrumentation and Measurement Meeting (EPIM) 1–6 (2018) doi:10.1109/epim.2018.8756428 – 10.1109/epim.2018.8756428
- Dias, T. C., Roque, L. A. A. M. & Ribeiro, P. F. Power electronics in the context of renewables, Power Quality and Smart Grids. 2016 17th International Conference on Harmonics and Quality of Power (ICHQP) 170–175 (2016) doi:10.1109/ichqp.2016.7783447 – 10.1109/ichqp.2016.7783447
- Montoya, R. J. G., Mallela, A. & Balda, J. C. An evaluation of selected solid-state transformer topologies for electric distribution systems. 2015 IEEE Applied Power Electronics Conference and Exposition (APEC) 1022–1029 (2015) doi:10.1109/apec.2015.7104474 – 10.1109/apec.2015.7104474
- Xu She, Huang, A. Q. & Burgos, R. Review of Solid-State Transformer Technologies and Their Application in Power Distribution Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics vol. 1 186–198 (2013) – 10.1109/jestpe.2013.2277917
- linyu, Cost benefit analysis of combined storage and distribution generation systems in smart distribution grid (2015)
- Hambridge, S., Huang, A. Q. & Yu, R. Solid State Transformer (SST) as an energy router: Economic dispatch based energy routing strategy. 2015 IEEE Energy Conversion Congress and Exposition (ECCE) 2355–2360 (2015) doi:10.1109/ecce.2015.7309991 – 10.1109/ecce.2015.7309991
- de la rubia, Estudio sobre el estado actual de las smart grids (2011)
- Xiao, Q., Chen, L., Jia, H., Wheeler, P. W. & Dragicevic, T. Model Predictive Control for Dual Active Bridge in Naval DC Microgrids Supplying Pulsed Power Loads Featuring Fast Transition and Online Transformer Current Minimization. IEEE Transactions on Industrial Electronics vol. 67 5197–5203 (2020) – 10.1109/tie.2019.2934070
- Song, W., Hou, N. & Wu, M. Virtual Direct Power Control Scheme of Dual Active Bridge DC–DC Converters for Fast Dynamic Response. IEEE Transactions on Power Electronics vol. 33 1750–1759 (2018) – 10.1109/tpel.2017.2682982
- Zhang, H. et al. Model predictive control of input‐series output‐parallel dual active bridge converters based DC transformer. IET Power Electronics vol. 13 1144–1152 (2020) – 10.1049/iet-pel.2019.1061
- Hou, N., Song, W. & wu, mingyi. Minimum-Current-Stress Scheme of Dual Active Bridge DC-DC Converter With Unified-phase-shift Control. IEEE Transactions on Power Electronics 1–1 (2016) doi:10.1109/tpel.2016.2521410 – 10.1109/tpel.2016.2521410
- Tong, A., Hang, L., Li, G., Jiang, X. & Gao, S. Modeling and Analysis of a Dual-Active-Bridge-Isolated Bidirectional DC/DC Converter to Minimize RMS Current With Whole Operating Range. IEEE Transactions on Power Electronics vol. 33 5302–5316 (2018) – 10.1109/tpel.2017.2692276
- Gil-Gonzalez, W. J., Garces, A., Fosso, O. B. & Escobar-Mejia, A. Passivity-Based Control of Power Systems Considering Hydro-Turbine With Surge Tank. IEEE Transactions on Power Systems vol. 35 2002–2011 (2020) – 10.1109/tpwrs.2019.2948360
- Zhang, M., Borja, P., Ortega, R., Liu, Z. & Su, H. PID Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 63 1032–1044 (2018) – 10.1109/tac.2017.2732283