Passivity-based control of islanded microgrids with unknown power loads
Authors
Sofía Avila-Becerril, Gerardo Espinosa-Pérez, Oscar Danilo Montoya, Alejandro Garces
Abstract
In this paper, the control problem of microgrids (MGs)operating in islanded mode is approached from a passivity-based control perspective. A control scheme is proposed that, relying only on local measurements for the power converters included in the network representation, achieves both voltage regulation and power balance in the network through the generation of grid-forming and grid-following nodes. From the mathematical perspective, the importance of the contribution lies in the feature that, exploiting a port-controlled Hamiltonian representation of the MG, the closed-loop system’s stability properties are formally proved using arguments from the theory of non-linear dynamical systems. Fundamental for this achievement is the decomposition of the system into subsystems that require a control law and another whose variables can evolve in a free way. From the practical viewpoint, the advantage of the proposed controller lies in the feature that the power demanded by the loads is satisfied without neither computing its specific value nor solving the non-linear algebraic equations given by the power flow, avoiding the computational burden associated with this task. The usefulness of the scheme is illustrated via a numerical simulation that includes practical considerations.
Citation
- Journal: IMA Journal of Mathematical Control and Information
- Year: 2020
- Volume: 37
- Issue: 4
- Pages: 1548–1573
- Publisher: Oxford University Press (OUP)
- DOI: 10.1093/imamci/dnaa025
BibTeX
@article{Avila_Becerril_2020,
title={{Passivity-based control of islanded microgrids with unknown power loads}},
volume={37},
ISSN={1471-6887},
DOI={10.1093/imamci/dnaa025},
number={4},
journal={IMA Journal of Mathematical Control and Information},
publisher={Oxford University Press (OUP)},
author={Avila-Becerril, Sofía and Espinosa-Pérez, Gerardo and Montoya, Oscar Danilo and Garces, Alejandro},
year={2020},
pages={1548--1573}
}
References
- Arani, A. A. K., Karami, H., Gharehpetian, G. B. & Hejazi, M. S. A. Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids. Renewable and Sustainable Energy Reviews 69, 9–18 (2017) – 10.1016/j.rser.2016.11.166
- Agundis-Tinajero, G. et al. Power flow modeling of islanded AC microgrids with hierarchical control. International Journal of Electrical Power & Energy Systems 105, 28–36 (2019) – 10.1016/j.ijepes.2018.08.002
- Avila-Becerril, S. & Espinosa-Pérez, G. Control of islanded microgrids considering power converter dynamics. International Journal of Control 94, 2520–2530 (2020) – 10.1080/00207179.2020.1713402
- Avila-Becerril, S., Espinosa-Perez, G. & Machado, J. E. On the Dynamic Solution of Power Flow Equations for Microgrids Control. 2019 IEEE 58th Conference on Decision and Control (CDC) 8423–8428 (2019) doi:10.1109/cdc40024.2019.9029596 – 10.1109/cdc40024.2019.9029596
- Avila-Becerril, S., Montoya, O. D., Espinosa-Pérez, G. & Garcés, A. Control of a Detailed Model of Microgrids from a Hamiltonian Approach ⁎ ⁎Part of this work was supported by DGAPA-UNAM under grant IN116516. IFAC-PapersOnLine 51, 187–192 (2018) – 10.1016/j.ifacol.2018.06.051
- Avila-Becerril, S., Espinosa-Pérez, G. & Fernandez, P. Dynamic Characterization of Typical Electrical Circuits via Structural Properties. Mathematical Problems in Engineering 2016, 1–13 (2016) – 10.1155/2016/7870462
- Bidram, A., Nasirian, V., Davoudi, A. & Lewis, F. L. Cooperative Synchronization in Distributed Microgrid Control. Advances in Industrial Control (Springer International Publishing, 2017). doi:10.1007/978-3-319-50808-5 – 10.1007/978-3-319-50808-5
- Bollobás, B. Modern Graph Theory. Graduate Texts in Mathematics (Springer New York, 1998). doi:10.1007/978-1-4612-0619-4 – 10.1007/978-1-4612-0619-4
- Bouzid, A. M. et al. A survey on control of electric power distributed generation systems for microgrid applications. Renewable and Sustainable Energy Reviews 44, 751–766 (2015) – 10.1016/j.rser.2015.01.016
- Cisneros, R. et al. Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters. Control Engineering Practice 43, 109–119 (2015) – 10.1016/j.conengprac.2015.07.002
- Gu, W. et al. Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review. International Journal of Electrical Power & Energy Systems 54, 26–37 (2014) – 10.1016/j.ijepes.2013.06.028
- Han, H. et al. Review of Power Sharing Control Strategies for Islanding Operation of AC Microgrids. IEEE Trans. Smart Grid 7, 200–215 (2016) – 10.1109/tsg.2015.2434849
- Jayachandran, M. & Ravi, G. Decentralized model predictive hierarchical control strategy for islanded AC microgrids. Electric Power Systems Research 170, 92–100 (2019) – 10.1016/j.epsr.2019.01.010
- Konstantopoulos, G. C., Zhong, Q.-C., Ren, B. & Krstic, M. Bounded droop controller for parallel operation of inverters. Automatica 53, 320–328 (2015) – 10.1016/j.automatica.2015.01.012
- Pogaku, N., Prodanovic, M. & Green, T. C. Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based Microgrid. IEEE Trans. Power Electron. 22, 613–625 (2007) – 10.1109/tpel.2006.890003
- Rojas, A. & Rousan, T. Microgrid Control Strategy: Derived from Stakeholder Requirements Analysis. IEEE Power and Energy Mag. 15, 72–79 (2017) – 10.1109/mpe.2017.2690520
- Schiffer, J., Ortega, R., Astolfi, A., Raisch, J. & Sezi, T. Conditions for stability of droop-controlled inverter-based microgrids. Automatica 50, 2457–2469 (2014) – 10.1016/j.automatica.2014.08.009
- Sepulchre, Constructive Nonlinear Control (2012)
- Shuai, Z. et al. Microgrid stability: Classification and a review. Renewable and Sustainable Energy Reviews 58, 167–179 (2016) – 10.1016/j.rser.2015.12.201
- Simpson-Porco, J. W., Dörfler, F. & Bullo, F. Synchronization and power sharing for droop-controlled inverters in islanded microgrids. Automatica 49, 2603–2611 (2013) – 10.1016/j.automatica.2013.05.018
- Stegink, T., De Persis, C. & van der Schaft, A. A Unifying Energy-Based Approach to Stability of Power Grids With Market Dynamics. IEEE Trans. Automat. Contr. 62, 2612–2622 (2017) – 10.1109/tac.2016.2613901
- Tuffner, F. K., Schneider, K. P., Hansen, J. & Elizondo, M. A. Modeling Load Dynamics to Support Resiliency-Based Operations in Low-Inertia Microgrids. IEEE Trans. Smart Grid 10, 2726–2737 (2019) – 10.1109/tsg.2018.2809452
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM J. Control Optim. 51, 906–937 (2013) – 10.1137/110840091