Authors

Oscar Danilo Montoya, Victor Manuel Garrido, Walter Gil-Gonzalez, C. Orozco-Henao

Abstract

This paper presents the development of a nonlinear controller for the reaction wheel pendulum (RWP) via an interconnection and damping assignment passivity-based control (IDA-PBC) approach. The IDA-PBC approach works with the port-Hamiltonian open-loop dynamics of the RWP to propose a nonlinear controller that preserves the Hamiltonian structure in closed-loop by guaranteeing stability properties in the sense of Lyapunov. Numerical results confirm the theoretical development presented throughout simulations in Simulink package from MATLAB. Comparison with a Lyapunov-based approach is also provided.

Citation

  • Journal: 2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)
  • Year: 2019
  • Volume:
  • Issue:
  • Pages: 1–6
  • Publisher: IEEE
  • DOI: 10.1109/ropec48299.2019.9057105

BibTeX

@inproceedings{Montoya_2019,
  title={{Passivity-Based Control Applied of a Reaction Wheel Pendulum: an IDA-PBC Approach}},
  DOI={10.1109/ropec48299.2019.9057105},
  booktitle={{2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)}},
  publisher={IEEE},
  author={Montoya, Oscar Danilo and Garrido, Victor Manuel and Gil-Gonzalez, Walter and Orozco-Henao, C.},
  year={2019},
  pages={1--6}
}

Download the bib file

References

  • Spong, M. W., Corke, P. & Lozano, R. Nonlinear control of the Reaction Wheel Pendulum. Automatica vol. 37 1845–1851 (2001) – 10.1016/s0005-1098(01)00145-5
  • Irfan, S., Mehmood, A., Razzaq, M. T. & Iqbal, J. Advanced sliding mode control techniques for Inverted Pendulum: Modelling and simulation. Engineering Science and Technology, an International Journal vol. 21 753–759 (2018) – 10.1016/j.jestch.2018.06.010
  • Hichri, B., Fauroux, J.-C., Adouane, L., Doroftei, I. & Mezouar, Y. Design of cooperative mobile robots for co-manipulation and transportation tasks. Robotics and Computer-Integrated Manufacturing vol. 57 412–421 (2019) – 10.1016/j.rcim.2019.01.002
  • montoya, Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach. Engineering Science and Technology An International Journal (2019)
  • montoya, Global Control of Reaction Wheel Pendulum Using Artificial Neural Networks and Extended Linearization. Scientia et Technica (2017)
  • Block, D. J., Åström, K. J. & Spong, M. W. The Reaction Wheel Pendulum. Synthesis Lectures on Control and Mechatronics (Springer International Publishing, 2008). doi:10.1007/978-3-031-01827-5 – 10.2200/s00085ed1v01y200702crm001
  • montoya, Global control of reaction wheel pendulum through energy regulation and extended linearization of the state variables. Tecno Lógicas (2014)
  • Srinivas, K. N. & Behera, L. Swing-up control strategies for a reaction wheel pendulum. International Journal of Systems Science vol. 39 1165–1177 (2008) – 10.1080/00207720802095137
  • correa-ramírez, Fuzzy control of an inverted pendulum Driven by a reaction wheel using a trajectory tracking scheme. Tecno Lógicas (2017)
  • Bapiraju, B., Srinivas, K. N., Kumar P, P. & Behera, L. On balancing control strategies for a reaction wheel pendulum. Proceedings of the IEEE INDICON 2004. First India Annual Conference, 2004. 199–204 doi:10.1109/indico.2004.1497738 – 10.1109/indico.2004.1497738
  • Rong-Jong Wai & Jeng-Dao Lee. Adaptive Fuzzy-Neural-Network Control for Maglev Transportation System. IEEE Transactions on Neural Networks vol. 19 54–70 (2008) – 10.1109/tnn.2007.900814
  • Murshitha Shajahan, M. S., Najumnissa Jamal, D., Aparna, V. & Ahamed Khan, M. K. A. Control of electric power generation of thermal power plant in TamilNadu. Case Studies in Thermal Engineering vol. 12 728–735 (2018) – 10.1016/j.csite.2018.08.008
  • Gil-González, W., Garces, A. & Escobar, A. Passivity-based control and stability analysis for hydro-turbine governing systems. Applied Mathematical Modelling vol. 68 471–486 (2019)10.1016/j.apm.2018.11.045
  • Liang, X., Fang, Y., Sun, N. & Lin, H. Nonlinear Hierarchical Control for Unmanned Quadrotor Transportation Systems. IEEE Transactions on Industrial Electronics vol. 65 3395–3405 (2018) – 10.1109/tie.2017.2752139
  • Murdock, D. D. & Taylor, D. G. Balancing a reaction wheel pendulum with PM synchronous motor actuation. IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society 96–102 (2014) doi:10.1109/iecon.2014.7048483 – 10.1109/iecon.2014.7048483
  • Salim, R., Mansouri, A., Bendiabdellah, A., Chekroun, S. & Touam, M. Sensorless passivity based control for induction motor via an adaptive observer. ISA Transactions vol. 84 118–127 (2019) – 10.1016/j.isatra.2018.10.002
  • Moon, U.-C., Lee, Y. & Lee, K. Y. Practical dynamic matrix control for thermal power plant coordinated control. Control Engineering Practice vol. 71 154–163 (2018) – 10.1016/j.conengprac.2017.10.014
  • Gil-González, W., Montoya, O. D. & Garces, A. Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach. International Journal of Electrical Power & Energy Systems vol. 110 588–597 (2019)10.1016/j.ijepes.2019.03.042
  • Ryalat, M. & Laila, D. S. A simplified IDA-PBC design for underactuated mechanical systems with applications. European Journal of Control vol. 27 1–16 (2016) – 10.1016/j.ejcon.2015.12.001
  • Fantoni, I., Lozano, R. & Spong, M. W. Stabilization of the reaction wheel pendulum using an energy approach. 2001 European Control Conference (ECC) 2552–2557 (2001) doi:10.23919/ecc.2001.7076312 – 10.23919/ecc.2001.7076312
  • Gutierrez-Oribio, D., Mercado-Uribe, A., Moreno, J. A. & Fridman, L. Stabilization of the Reaction Wheel Pendulum via a Third Order Discontinuous Integral Sliding Mode Algorithm. 2018 15th International Workshop on Variable Structure Systems (VSS) 132–137 (2018) doi:10.1109/vss.2018.8460358 – 10.1109/vss.2018.8460358
  • valenzuela, Local control of reaction wheel pendulum using fuzzy logic. Scientia et Technica (2013)
  • perko, Differential Equations and Dynamical Systems Texts in Applied Mathematics (2013)
  • kundur, Power System Stability and Control (2005)
  • El-Nagar, A. M., El-Bardini, M. & EL-Rabaie, N. M. Intelligent control for nonlinear inverted pendulum based on interval type-2 fuzzy PD controller. Alexandria Engineering Journal vol. 53 23–32 (2014) – 10.1016/j.aej.2013.11.006
  • Lin, K.-J. Stabilization of uncertain fuzzy control systems via a new descriptor system approach. Computers & Mathematics with Applications vol. 64 1170–1178 (2012) – 10.1016/j.camwa.2012.03.059