Parallel simultaneous stabilization of two systems governed by partial differential equations subject to actuator saturation
Authors
Abstract
A parallel simultaneous stabilization of two systems governed by partial differential equation (PDE), with conservation law subject to actuator saturation, is considered, and a method on the control design is proposed. Based on the orthogonal decomposition for a Port-Controlled Hamiltonian system, an approach to the parallel simultaneous stabilization of two systems governed by partial differential equation, with conservation law subject to actuator saturation, is established. The study shows that the parallel simultaneous stabilization controller obtained in this paper is valid in the case of the systems governed by the PDEs.
Keywords
actuator saturation, conservation law, parallel simultaneous stabilization, partial differential equation
Citation
- Journal: Nonlinear Analysis: Theory, Methods & Applications
- Year: 2009
- Volume: 71
- Issue: 3-4
- Pages: 829–837
- Publisher: Elsevier BV
- DOI: 10.1016/j.na.2008.10.111
BibTeX
@article{Zong_2009,
title={{Parallel simultaneous stabilization of two systems governed by partial differential equations subject to actuator saturation}},
volume={71},
ISSN={0362-546X},
DOI={10.1016/j.na.2008.10.111},
number={3–4},
journal={Nonlinear Analysis: Theory, Methods & Applications},
publisher={Elsevier BV},
author={Zong, Xiju and Han, Zhenlai},
year={2009},
pages={829--837}
}References
- Coutinho, D. F. & da Silva, J. M. G. Estimating the Region of Attraction of Nonlinear Control Systems with Saturating Actuators. 2007 American Control Conference 4715–4720 (2007) doi:10.1109/acc.2007.4282430 – 10.1109/acc.2007.4282430
- Yong-Yan Cao & Zongli Lin. Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation. IEEE Trans. Fuzzy Syst. 11, 57–67 (2003) – 10.1109/tfuzz.2002.806317
- Stoorvogel, A. A., Saberi, A. & Weiland, S. On external semi-global stochastic stabilization of linear systems with input saturation. 2007 American Control Conference 5845–5850 (2007) doi:10.1109/acc.2007.4282930 – 10.1109/acc.2007.4282930
- Gomes, Anti-windup design with guaranteed regions of stability: An LMI-based approach. IEEE Trans. Automat. Control (2005)
- Hu, T., Lin, Z. & Chen, B. M. An analysis and design method for linear systems subject to actuator saturation and disturbance. Automatica 38, 351–359 (2002) – 10.1016/s0005-1098(01)00209-6
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Cheng, D., Astolfi, A. & Ortega, R. On feedback equivalence to port controlled Hamiltonian systems. Systems & Control Letters 54, 911–917 (2005) – 10.1016/j.sysconle.2005.02.005
- Wang, Y., Li, C. & Cheng, D. Generalized Hamiltonian realization of time-invariant nonlinear systems. Automatica 39, 1437–1443 (2003) – 10.1016/s0005-1098(03)00132-8
- Wang, Y., Feng, G. & Cheng, D. Simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian systems. Automatica 43, 403–415 (2007) – 10.1016/j.automatica.2006.09.008
- Degasperis, Asymptotic integrability. (1999)
- Camassa, R. & Holm, D. D. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993) – 10.1103/physrevlett.71.1661
- JOHNSON, R. S. Camassa–Holm, Korteweg–de Vries and relatedmodels for water waves. J. Fluid Mech. 455, 63–82 (2002) – 10.1017/s0022112001007224
- Constantin, A. & McKean, H. P. A shallow water equation on the circle. Comm. Pure Appl. Math. 52, 949–982 (1999) – 10.1002/(sici)1097-0312(199908)52:8<949::aid-cpa3>3.0.co;2-d
- Constantin, A., Gerdjikov, V. S. & Ivanov, R. I. Inverse scattering transform for the Camassa–Holm equation. Inverse Problems 22, 2197–2207 (2006) – 10.1088/0266-5611/22/6/017
- Constantin, A. The trajectories of particles in Stokes waves. Invent. math. 166, 523–535 (2006) – 10.1007/s00222-006-0002-5
- Toland, J. F. Stokes waves. TMNA 7, 1 (1996) – 10.12775/tmna.1996.001
- Constantin, A. & Escher, J. Particle trajectories in solitary water waves. Bull. Amer. Math. Soc. 44, 423–431 (2007) – 10.1090/s0273-0979-07-01159-7
- Constantin, A. & Strauss, W. A. Stability of peakons. Comm. Pure Appl. Math. 53, 603–610 (2000) – 10.1002/(sici)1097-0312(200005)53:5<603::aid-cpa3>3.0.co;2-l
- Constantin, A. & Molinet, L. Orbital stability of solitary waves for a shallow water equation. Physica D: Nonlinear Phenomena 157, 75–89 (2001) – 10.1016/s0167-2789(01)00298-6
- Lenells, J. A Variational Approach to the Stability of Periodic Peakons. JNMP 11, 151 (2004) – 10.2991/jnmp.2004.11.2.2
- El Dika, K. & Molinet, L. Exponential decay o -localized solutions and stability of the train o solitary waves for the Camassa–Holm equation. Phil. Trans. R. Soc. A. 365, 2313–2331 (2007) – 10.1098/rsta.2007.2011
- Beals, R., Sattinger, D. H. & Szmigielski, J. Multi-peakons and a theorem of Stieltjes. Inverse Problems 15, L1–L4 (1999) – 10.1088/0266-5611/15/1/001
- Bressan, A. & Constantin, A. Global Conservative Solutions of the Camassa–Holm Equation. Arch Rational Mech Anal 183, 215–239 (2006) – 10.1007/s00205-006-0010-z
- Degasperis, A new integrable equation with peakon solitons. Theoret. Math. Phys. (2002)
- Degasperis, Integrable and non-integrable equation with peakons. Nonlinear Phys.: Theory and Experiment, Gallllipoli (2002)
- Hone, A. N. W. & Wang, J. P. Prolongation algebras and Hamiltonian operators for peakon equations. Inverse Problems 19, 129–145 (2002) – 10.1088/0266-5611/19/1/307
- Lundmark, H. & Szmigielski, J. Multi-peakon solutions of the Degasperis–Procesi equation. Inverse Problems 19, 1241–1245 (2003) – 10.1088/0266-5611/19/6/001
- Zhou, Y. Blow-up phenomenon for the integrable Degasperis–Procesi equation. Physics Letters A 328, 157–162 (2004) – 10.1016/j.physleta.2004.06.027
- Yin, Z. Global existence for a new periodic integrable equation. Journal of Mathematical Analysis and Applications 283, 129–139 (2003) – 10.1016/s0022-247x(03)00250-6
- Yin, Z. Global weak solutions for a new periodic integrable equation with peakon solutions. Journal of Functional Analysis 212, 182–194 (2004) – 10.1016/j.jfa.2003.07.010
- Constantin, A. & Kolev, B. Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78, 787–804 (2003) – 10.1007/s00014-003-0785-6
- Constantin, A. Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Annales de l’Institut Fourier 50, 321–362 (2000) – 10.5802/aif.1757
- Tsuchida, T., Ujino, H. & Wadati, M. Integrable semi-discretization of the coupled nonlinear Schrödinger equations. J. Phys. A: Math. Gen. 32, 2239–2262 (1999) – 10.1088/0305-4470/32/11/016
- Li-xin, T., Gang, X. & Zeng-rong, L. The concave or convex peaked and smooth soliton solutions of Camassa-Holm equation. Appl Math Mech 23, 557–567 (2002) – 10.1007/bf02437774
- Vakhnenko, V. O. & Parkes, E. J. Periodic and solitary-wave solutions of the Degasperis–Procesi equation. Chaos, Solitons & Fractals 20, 1059–1073 (2004) – 10.1016/j.chaos.2003.09.043
- Guo, Periodic cusp wave solution sand is single-solutions for b-equation. Chaos Solitons Fractals (2005)
- Qian, Peakons and periodic cusp waves in a generalized Camassa–Holm equation. Chaos Solitons Fractals (2000)
- Liu, Z., Wang, R. & Jing, Z. Peaked wave solutions of Camassa–Holm equation☆. Chaos, Solitons & Fractals 19, 77–92 (2004) – 10.1016/s0960-0779(03)00082-1
- Tang, M. & Yang, C. Extension on peaked wave solutions of CH-γ equation. Chaos, Solitons & Fractals 20, 815–825 (2004) – 10.1016/j.chaos.2003.09.018
- Guo, B. & Liu, Z. Peaked wave solutions of CH-r equation. Sci. China Ser. A-Math. 46, 696–709 (2003) – 10.1007/bf02942241
- Daizhan Cheng, Spurgeon, S. & Jianping Xiang. On the development of generalized Hamiltonian realizations. Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187) vol. 5 5125–5130 – 10.1109/cdc.2001.914763
- Khalil, (1996)