Overcoming the dissipation obstacle with Bicomplex Port-Hamiltonian Mechanics
Authors
Abstract
The dissipation obstacle refers to the problem that there is no general solution to shape the energy of dissipative port-Hamiltonian (pH) systems with the method of Casimir functions. This paper argues that it is caused by lack of a strictly symplectic structure of a dissipative port-Hamiltonian system. We develop a method of bicomplex pH systems that is strictly symplectic and we show how it overcomes the obstacle and allows one to systematically use Casimir functions to shape the energy.
Keywords
dissipation obstacle; energy-Casimir method; port-Hamiltonian systems; Hamiltonian mechanics; energy shaping
Citation
- Journal: IFAC-PapersOnLine
- Year: 2020
- Volume: 53
- Issue: 2
- Pages: 5573–5578
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2020.12.1569
- Note: 21st IFAC World Congress- Berlin, Germany, 11–17 July 2020
BibTeX
@article{Hutters_2020,
title={{Overcoming the dissipation obstacle with Bicomplex Port-Hamiltonian Mechanics}},
volume={53},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2020.12.1569},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Hutters, Coen and Mendel, Max},
year={2020},
pages={5573--5578}
}
References
- Allison, A., Pearce, C. E. M. & Abbott, D. A Variational Approach to the Analysis of Dissipative Electromechanical Systems. PLoS ONE vol. 9 e77190 (2014) – 10.1371/journal.pone.0077190
- Arnol’d, (1989)
- Goldstein, (1980)
- Marsden, (2002)
- Novaes, M. Some basics of su(1,1). Revista Brasileira de Ensino de Física vol. 26 351–357 (2004) – 10.1590/s1806-11172004000400008
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Riewe, F. Mechanics with fractional derivatives. Physical Review E vol. 55 3581–3592 (1997) – 10.1103/physreve.55.3581
- Shankar, (1994)
- Singer, (2001)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Van der Schaft, (2017)