On the Weierstraß form of infinite-dimensional differential algebraic equations
Authors
Mehmet Erbay, Birgit Jacob, Kirsten Morris
Abstract
The solvability for infinite-dimensional differential algebraic equations possessing a resolvent index and a Weierstraß form is studied. In particular, the concept of integrated semigroups is used to determine a subset on which solutions exist and are unique. This information is later used for a important class of systems, namely, port-Hamiltonian differential algebraic equations.
Citation
- Journal: Journal of Evolution Equations
- Year: 2024
- Volume: 24
- Issue: 4
- Pages:
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00028-024-01003-3
BibTeX
@article{Erbay_2024,
title={{On the Weierstraß form of infinite-dimensional differential algebraic equations}},
volume={24},
ISSN={1424-3202},
DOI={10.1007/s00028-024-01003-3},
number={4},
journal={Journal of Evolution Equations},
publisher={Springer Science and Business Media LLC},
author={Erbay, Mehmet and Jacob, Birgit and Morris, Kirsten},
year={2024}
}
References
- Arendt, W., Batty, C. J. K., Hieber, M. & Neubrander, F. Vector-Valued Laplace Transforms and Cauchy Problems. (Springer Basel, 2011). doi:10.1007/978-3-0348-0087-7 – 10.1007/978-3-0348-0087-7
- Erbay, M., Jacob, B., Morris, K., Reis, T. & Tischendorf, C. Index Concepts for Linear Differential-Algebraic Equations in Infinite Dimensions. DAE Panel vol. 2 (2024) – 10.52825/dae-p.v2i.2514
- VE Fedorov. V. E. Fedorov and O. A. Ruzakova. On solvability of perturbed Sobolev type equations St Petersburg Mathematical Journal, 20:645–664, Jun. 2009 (2009)
- Gernandt, H., Haller, F. E. & Reis, T. A Linear Relation Approach to Port-Hamiltonian Differential-Algebraic Equations. SIAM Journal on Matrix Analysis and Applications vol. 42 1011–1044 (2021) – 10.1137/20m1371166
- H. Gernandt and T. Reis. A pseudo-resolvent approach to abstract differential-algebraic equations, Dec. 2023. arXiv:2312.02303.
- Heidari, H. & Zwart, H. Port-Hamiltonian modelling of nonlocal longitudinal vibrations in a viscoelastic nanorod. Mathematical and Computer Modelling of Dynamical Systems vol. 25 447–462 (2019) – 10.1080/13873954.2019.1659374
- Jacob, B. & Morris, K. On Solvability of Dissipative Partial Differential-Algebraic Equations. IEEE Control Systems Letters vol. 6 3188–3193 (2022) – 10.1109/lcsys.2022.3183479
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Karličić, D., Cajić, M., Murmu, T. & Adhikari, S. Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems. European Journal of Mechanics - A/Solids vol. 49 183–196 (2015) – 10.1016/j.euromechsol.2014.07.005
- S. G. Krejn. Linear differential equations in Banach space. Translations of mathematical monographs. American Mathematical Soc, Providence, RI, 1971. Type: book.
- Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017
- Mehrmann, V. Index Concepts for Differential-Algebraic Equations. Encyclopedia of Applied and Computational Mathematics 676–681 (2015) doi:10.1007/978-3-540-70529-1_120 – 10.1007/978-3-540-70529-1_120
- V. Mehrmann and H. Zwart. Abstract dissipative Hamiltonian differential-algebraic equations are everywhere, Nov. 2023. arXiv:2311.03091.
- Melnikova, I. Properties of an abstract pseudoresolvent and well-posedness of the degenerate Cauchy problem. Banach Center Publications vol. 37 151–157 (1996) – 10.4064/-37-1-151-157
- Neubrander, F. Integrated semigroups and their applications to the abstract Cauchy problem. Pacific Journal of Mathematics vol. 135 111–155 (1988) – 10.2140/pjm.1988.135.111
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences (Springer New York, 1983). doi:10.1007/978-1-4612-5561-1 – 10.1007/978-1-4612-5561-1
- Reis, T. Controllability and Observability of Infinite-Dimensional Descriptor Systems. IEEE Transactions on Automatic Control vol. 53 929–940 (2008) – 10.1109/tac.2008.920236
- Reis, T. & Tischendorf, C. Frequency Domain Methods and Decoupling of Linear Infinite Dimensional Differential Algebraic Systems. Journal of Evolution Equations vol. 5 357–385 (2005) – 10.1007/s00028-005-0198-7
- Sviridyuk, G. A. & Fedorov, V. E. Linear Sobolev Type Equations and Degenerate Semigroups of Operators. (2003) doi:10.1515/9783110915501 – 10.1515/9783110915501
- B. Thaller and S. Thaller. Factorization of degenerate cauchy problems: the linear case. Journal of Operator Theory, 36, Jan. 1996.
- Thaller, B. & Thaller, S. Semigroup Theory of Degenerate Linear Cauchy Problems. Semigroup Forum vol. 62 375–398 (2001) – 10.1007/s002330010046
- Trostorff, S. Semigroups Associated with Differential-Algebraic Equations. Springer Proceedings in Mathematics & Statistics 79–94 (2020) doi:10.1007/978-3-030-46079-2_5 – 10.1007/978-3-030-46079-2_5
- Trostorff, S. & Waurick, M. On higher index differential-algebraic equations in infinite dimensions. Operator Theory: Advances and Applications 477–486 (2018) doi:10.1007/978-3-319-75996-8_27 – 10.1007/978-3-319-75996-8_27
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- Zabczyk, J. Mathematical Control Theory. (Birkhäuser Boston, 2008). doi:10.1007/978-0-8176-4733-9 – 10.1007/978-0-8176-4733-9