On the Modeling of a Three-Level Flying Capacitor Buck DC-DC Converter based on Bond Graph and Port Hamiltonian System Approaches
Authors
Matias Veillon, Christian A. Rojas, Hector Ramirez, Eduardo Espinosa
Abstract
The advancement of power electronics field today has allowed us to generate new technologies in various areas such as renewable energies, energy storage systems with batteries, electric chargers, electric vehicle traction systems, and more. New technologies are increasingly demanding in terms of accuracy of system variables; for this, advanced control methods are applied, and this requires a model that correctly represents the operation of the system. The models of power converters are not trivial; therefore, this paper proposes to model a ThreeLevel Flying Capacitor Buck DC-DC Converter using the bond graph technique, which is a multiphysics modeling tool based on the electrical domain that will facilitate the comprehensive modeling of the system. In addition, the obtained model from the bond graph approach can be directly linked with a Port Hamiltonian System, to obtain a physical representation of the system and based on the conservation of energy. Moreover, results are presented with a proposed non-linear closed-loop control model decoupling the voltage and current dynamics of the multilevel converter. The obtained dynamic results demonstrate the good performance of the proposed modeling methodology.
Citation
- Journal: 2024 IEEE International Conference on Automation/XXVI Congress of the Chilean Association of Automatic Control (ICA-ACCA)
- Year: 2024
- Volume:
- Issue:
- Pages: 1–6
- Publisher: IEEE
- DOI: 10.1109/ica-acca62622.2024.10766802
BibTeX
@inproceedings{Veillon_2024,
title={{On the Modeling of a Three-Level Flying Capacitor Buck DC-DC Converter based on Bond Graph and Port Hamiltonian System Approaches}},
DOI={10.1109/ica-acca62622.2024.10766802},
booktitle={{2024 IEEE International Conference on Automation/XXVI Congress of the Chilean Association of Automatic Control (ICA-ACCA)}},
publisher={IEEE},
author={Veillon, Matias and Rojas, Christian A. and Ramirez, Hector and Espinosa, Eduardo},
year={2024},
pages={1--6}
}
References
- Akagi, H. Multilevel Converters: Fundamental Circuits and Systems. Proc. IEEE 105, 2048–2065 (2017) – 10.1109/jproc.2017.2682105
- Joseph, A. & Chelliah, T. R. A Review of Power Electronic Converters for Variable Speed Pumped Storage Plants: Configurations, Operational Challenges, and Future Scopes. IEEE J. Emerg. Sel. Topics Power Electron. 6, 103–119 (2018) – 10.1109/jestpe.2017.2707397
- Poorfakhraei, A., Narimani, M. & Emadi, A. A Review of Multilevel Inverter Topologies in Electric Vehicles: Current Status and Future Trends. IEEE Open J. Power Electron. 2, 155–170 (2021) – 10.1109/ojpel.2021.3063550
- Kien, L. C., Tuyet, N. T. Y., Phan, T. M. & Nguyen, T. T. The Combination of Energy Storage and Renewable Energies to Reach a Maximum Profit for Power Systems. IEEE Access 11, 125929–125950 (2023) – 10.1109/access.2023.3326354
- Khalid, M. R., Khan, I. A., Hameed, S., Asghar, M. S. J. & Ro, J. A Comprehensive Review on Structural Topologies, Power Levels, Energy Storage Systems, and Standards for Electric Vehicle Charging Stations and Their Impacts on Grid. IEEE Access 9, 128069–128094 (2021) – 10.1109/access.2021.3112189
- Beckmann, C. S. et al. Comparison of Modulation Strategies for a Dual Active Bridge Partial Power DC-DC Converter in EV Powertrains. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society 1–6 (2022) doi:10.1109/iecon49645.2022.9968809 – 10.1109/iecon49645.2022.9968809
- Marin, J. et al. Open-Source Multilevel Converter Power IC Design and Test. IEEE Des. Test 41, 19–27 (2024) – 10.1109/mdat.2024.3405892
- Pesantez, D., Rodriguez, F., Renaudineau, H., Rivera, S. & Kouro, S. Buck-Boost Flying Capacitor DC-DC Converter for Electric Vehicle Charging Stations. 2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG) 1–6 (2023) doi:10.1109/cpe-powereng58103.2023.10227461 – 10.1109/cpe-powereng58103.2023.10227461
- Chen, H.-C., Lu, C.-Y., Lien, W.-H. & Chen, T.-H. Active Capacitor Voltage Balancing Control for Three-Level Flying Capacitor Boost Converter Based on Average-Behavior Circuit Model. IEEE Trans. on Ind. Applicat. 55, 1628–1638 (2019) – 10.1109/tia.2018.2876031
- Richard, E., Renaudineau, H., Llor, A. M., Bugueno, R. A. & Rojas, C. A. Transformerless Partial Power AC-Link Converter for PV Integration to DC Microgrid. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society 1–6 (2022) doi:10.1109/iecon49645.2022.9968982 – 10.1109/iecon49645.2022.9968982
- Bugueño, R. A., Renaudineau, H., Llor, A. M. & Rojas, C. A. Transformerless Partial Power AC-Link Step-Down Converter. Mathematics 12, 1939 (2024) – 10.3390/math12131939
- Garcia-Gomez, J., Rimaux, S. & Delgado, M. Bond Graphs in the Design of Adaptive Passivity-Based Controllers for DC/DC Power Converters. 2006 IEEE International Conference on Industrial Technology 132–137 (2006) doi:10.1109/icit.2006.372305 – 10.1109/icit.2006.372305
- Sanchez, R., Dauphin-Tanguy, G., Guillaud, X. & Colas, F. Bond graph based control of a three-phase inverter with LC filter – Connection to passive and active loads. Simulation Modelling Practice and Theory 18, 1185–1198 (2010) – 10.1016/j.simpat.2010.05.016
- Trabelsi, M., Ghazi, K. A., Al-Emadi, N. & Ben-Brahim, L. An original controller design for a grid connected PV system. IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society 924–929 (2012) doi:10.1109/iecon.2012.6389167 – 10.1109/iecon.2012.6389167
- Li, Y., Kuprat, J., Li, Y. & Liserre, M. Graph-Theory-Based Derivation, Modeling, and Control of Power Converter Systems. IEEE J. Emerg. Sel. Topics Power Electron. 10, 6557–6571 (2022) – 10.1109/jestpe.2022.3143437
- Ayala-Jaimes, G. & Gonzalez-Avalos, G. MOSFET Modelling for a Three-Level Inverter Circuit: A Hybrid Bond Graph Approach. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society 1–5 (2022) doi:10.1109/iecon49645.2022.9968725 – 10.1109/iecon49645.2022.9968725
- Gonzalez-Contreras, B. M., Rullan-Lara, J. L., Vela-Valdes, L. G. & Claudio, A. S. Modelling, Simulation and Fault Diagnosis of the Three-Phase Inverter Using Bond Graph. 2007 IEEE International Symposium on Industrial Electronics 130–135 (2007) doi:10.1109/isie.2007.4374586 – 10.1109/isie.2007.4374586
- Umarikar, A. C. & Umanand, L. Modelling of switching systems in bond graphs using the concept of switched power junctions. Journal of the Franklin Institute 342, 131–147 (2005) – 10.1016/j.jfranklin.2004.08.005
- Dai, J., Shen, Y. & Zhao, Z. Modeling and Matlab Simulation of the Inverter Based on Bond Graph. 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA) 588–593 (2021) doi:10.1109/iciea51954.2021.9516366 – 10.1109/iciea51954.2021.9516366
- Markakis, A., Holderbaum, W. & Potter, B. A comparison between bond graphs switching modelling techniques implemented on a boost dc-dc converter. 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC) 1–7 (2011) doi:10.1109/intlec.2011.6099778 – 10.1109/intlec.2011.6099778
- Zrafi, R., Ghedira, S., Dhahri, Y. & Besbes, K. Bond graph based automated modeling of switch-mode power converters using VHDL-AMS. 2017 International Conference on Control, Automation and Diagnosis (ICCAD) 042–047 (2017) doi:10.1109/cadiag.2017.8075628 – 10.1109/cadiag.2017.8075628
- Becerra, G. et al. Hybrid Lyapunov based control of multicellular converters using Port-Hamiltonian modeling. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society 8213–8218 (2017) doi:10.1109/iecon.2017.8217441 – 10.1109/iecon.2017.8217441
- Gil-González, W., Riffo, S., Montoya, O. D., Restrepo, C. & Hernández, J. C. Adaptive Voltage Control for Second-Order DC–DC Converters Supplying an Unknown Constant Power Load: A Generalized PBC Plus Damping Injection Design. IEEE Access 11, 47390–47409 (2023) – 10.1109/access.2023.3275083
- Chen, H.-C., Lu, C.-Y. & Lien, W.-H. Active capacitor voltage balancing control for three-level flying capacitor boost converter. 2018 IEEE Applied Power Electronics Conference and Exposition (APEC) 127–132 (2018) doi:10.1109/apec.2018.8340998 – 10.1109/apec.2018.8340998
- Bi, K. et al. A Model Predictive Controlled Bidirectional Four Quadrant Flying Capacitor DC/DC Converter Applied in Energy Storage System. IEEE Trans. Power Electron. 37, 7705–7717 (2022) – 10.1109/tpel.2022.3146510