Authors

Jesús Clemente-Gallardo, Bernhard M. Maschke, Arjan J. Schaft

Abstract

In 1994, van der Schaft and Maschke defined a(n) (almost) Poisson structure for the study of constrained port controlled Hamiltonian systems as systems obtained by reduction. This note intends to provide a geometrical framework that justifies such construction, based on the use of Lie algebroids, and which extends the work presented in [ 3 ].

Keywords

cotangent bundle, hamiltonian system, poisson manifold, poisson structure, tangent bundle

Citation

BibTeX

@inbook{Clemente_Gallardo,
  title={{On Constrained Dynamical Systems and Algebroids}},
  ISBN={9783540428909},
  DOI={10.1007/3-540-45606-6_14},
  booktitle={{Dynamics, Bifurcations, and Control}},
  publisher={Springer Berlin Heidelberg},
  author={Clemente-Gallardo, Jesús and Maschke, Bernhard M. and Schaft, Arjan J.},
  pages={203--216}
}

Download the bib file

References

  • Blankenstein, G. & van der Schaft, A. J. Reduction of implicit hamiltonian systems with symmetry. 1999 European Control Conference (ECC) 563–568 (1999) doi:10.23919/ecc.1999.7099364 – 10.23919/ecc.1999.7099364
  • Clemente-Gallardo, J. Applications of Lie algebroids in mechanics and control theory. Lecture Notes in Control and Information Sciences 299–313 doi:10.1007/bfb0110222 – 10.1007/bfb0110222
  • Clemente-Gallardo, J., Mascheke, B. & van der Schaft, A. J. Kinematical constraints and algebroids. Reports on Mathematical Physics 47, 413–429 (2001) – 10.1016/s0034-4877(01)80053-7
  • Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.2307/2001258
  • Dorfman, I. Ya. Dirac structures of integrable evolution equations. Physics Letters A 125, 240–246 (1987)10.1016/0375-9601(87)90201-5
  • Hermann, R. Analytic continuation of group representations. IV. Commun.Math. Phys. 5, 131–156 (1967) – 10.1007/bf01646842
  • J.-C. Herz, C. R. Acad. Sci. Paris, Série A (1953)
  • Libermann, P. & Marle, C.-M. Symplectic Geometry and Analytical Mechanics. (Springer Netherlands, 1987). doi:10.1007/978-94-009-3807-6 – 10.1007/978-94-009-3807-6
  • R. S. Palais, A global formulation of the Lie theory of transformation groups (1957)
  • J. Pradines, C. R. Acad. Sci. Paris Sér. I Math. (1966)
  • Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics 34, 225–233 (1994) – 10.1016/0034-4877(94)90038-8
  • Weinstein, A. Lagrangian mechanics and groupoids. Mechanics Day 207–231 (1995) doi:10.1090/fic/007/10 – 10.1090/fic/007/10