Modelling and Control Design of a V-Shaped Thermal Actuator System via Partial Derivative Equation Approach
Authors
Nguyen Tien Dzung, Dao Phuong Nam, Nguyen Quang Dich
Abstract
This work presents a dynamic model of V-shaped thermal actuator using an assumption that all beams are considered to be homogeneous and the heat source is evenly distributed on those beams. Furthermore, the control scheme of this system is proposed from the view point of partial derivative equations (PDE) and separation method. The offline simulation results show that the outgoing parameters reflect exactly the physical nature of the subject and they are suitable with the simulation outcomes in the software Ansys. The work outcome would be a foundation for the model development and control design problem for micro motors using thermal expansion effects.
Citation
- Journal: Proceedings of the 5th International Conference on Mechatronics and Robotics Engineering
- Year: 2019
- Volume:
- Issue:
- Pages: 78–82
- Publisher: ACM
- DOI: 10.1145/3314493.3314516
BibTeX
@inproceedings{Dzung_2019,
series={ICMRE’19},
title={{Modelling and Control Design of a V-Shaped Thermal Actuator System via Partial Derivative Equation Approach}},
DOI={10.1145/3314493.3314516},
booktitle={{Proceedings of the 5th International Conference on Mechatronics and Robotics Engineering}},
publisher={ACM},
author={Dzung, Nguyen Tien and Nam, Dao Phuong and Dich, Nguyen Quang},
year={2019},
pages={78--82},
collection={ICMRE’19}
}
References
- Kumar, V. & Sharma, N. N. Design and Validation of Silicon-on-Insulator Based U Shaped Thermal Microactuator. International Journal of Materials, Mechanics and Manufacturing 86–91 (2014) doi:10.7763/ijmmm.2014.v2.106 – 10.7763/ijmmm.2014.v2.106
- Guan, C. & Zhu, Y. An electrothermal microactuator with Z-shaped beams. Journal of Micromechanics and Microengineering vol. 20 085014 (2010) – 10.1088/0960-1317/20/8/085014
- Zhu Yong, JULY (2012)
- Varona J., Fourth Congress of Electronics, Robotics and Automotive Mechanics (2007)
- Yan, D., Khajepour, A. & Mansour, R. Modeling of two-hot-arm horizontal thermal actuator. Journal of Micromechanics and Microengineering vol. 13 312–322 (2003) – 10.1088/0960-1317/13/2/321
- High Force Low Michael, Inter Society Conference on thermal Phenomena (2000)
- Maloney, J. M., Schreiber, D. S. & DeVoe, D. L. Large-force electrothermal linear micromotors. Journal of Micromechanics and Microengineering vol. 14 226–234 (2003) – 10.1088/0960-1317/14/2/009
- Li, X. et al. Design of a large displacement thermal actuator with a cascaded V-beam amplification for MEMS safety-and-arming devices. Microsystem Technologies vol. 21 2367–2374 (2015) – 10.1007/s00542-015-2447-1
- Mayyas, M. & Stephanou, H. Electrothermoelastic modeling of MEMS gripper. Microsystem Technologies vol. 15 637–646 (2008) – 10.1007/s00542-008-0752-7
- Jae-Sung Park, Chu, L. L., Oliver, A. D. & Gianchandani, Y. B. Bent-beam electrothermal actuators-Part II: Linear and rotary microengines. Journal of Microelectromechanical Systems vol. 10 255–262 (2001) – 10.1109/84.925774
- Shen, X. & Chen, X. Mechanical Performance of a Cascaded V-Shaped Electrothermal Actuator. International Journal of Advanced Robotic Systems vol. 10 (2013) – 10.5772/56786
- Shan, T., Qi, X., Cui, L. & Zhou, X. Thermal behavior modeling and characteristics analysis of electrothermal microactuators. Microsystem Technologies vol. 23 2629–2640 (2016) – 10.1007/s00542-016-3070-5
- Zhang, Z., Yu, Y., Liu, X. & Zhang, X. Dynamic modelling and analysis of V- and Z-shaped electrothermal microactuators. Microsystem Technologies vol. 23 3775–3789 (2016) – 10.1007/s00542-016-3180-0
- Zhuo, Zhang ets al; Closed-Form Modelling and Design Analysis of V- and Z-shaped Electrotermal Microactuators;. Journal of Micromechanics and Microengineering (2016)
- Xu, X. & Dubljevic, S. Output and error feedback regulator designs for linear infinite-dimensional systems. Automatica vol. 83 170–178 (2017) – 10.1016/j.automatica.2017.06.003
- El-Farra, N. H., Armaou, A. & Christofides, P. D. Analysis and control of parabolic PDE systems with input constraints. Automatica vol. 39 715–725 (2003) – 10.1016/s0005-1098(02)00304-7
- Cheng, D., Astolfi, A. & Ortega, R. On feedback equivalence to port controlled Hamiltonian systems. Systems & Control Letters vol. 54 911–917 (2005) – 10.1016/j.sysconle.2005.02.005
- Deutscher, J. A backstepping approach to the output regulation of boundary controlled parabolic PDEs. Automatica vol. 57 56–64 (2015) – 10.1016/j.automatica.2015.04.008
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Izadi, M., Abdollahi, J. & Dubljevic, S. S. PDE backstepping control of one-dimensional heat equation with time-varying domain. Automatica vol. 54 41–48 (2015) – 10.1016/j.automatica.2015.01.024
- Wu, H.-N., Wang, J.-W. & Li, H.-X. Exponential Stabilization for a Class of Nonlinear Parabolic PDE Systems via Fuzzy Control Approach. IEEE Transactions on Fuzzy Systems vol. 20 318–329 (2012) – 10.1109/tfuzz.2011.2173694
- Xu, X. & Dubljevic, S. The state feedback servo-regulator for countercurrent heat-exchanger system modelled by system of hyperbolic PDEs. European Journal of Control vol. 29 51–61 (2016) – 10.1016/j.ejcon.2016.02.002
- Baker, J. & Christofides, P. D. Finite-dimensional approximation and control of non-linear parabolic PDE systems. International Journal of Control vol. 73 439–456 (2000) – 10.1080/002071700219614