Authors

Songyuan Liu, Qingkai Yang, Jingshuo Lv, Hao Fang

Abstract

Existing tensegrity robot modeling predominantly relies on cable length as the primary control input, making it intractable for implementation on motor-driven physical systems. In addition, the current models lack precise formulations for intricate environmental interactions, such as ground contact forces during deformation and rolling maneuvers. To bridge these gaps, our study proposes a practicable modeling approach tailored for six-bar tensegrity robots within the Port-Hamiltonian framework. We address the internal forces stemming from interconnected bars and cables by elegantly formulating them as Hamiltonian expressions. Central to our modeling is the versatile “port”, encompassing contact and friction forces, and motor-driven propulsion. These considerations exhibit a broad applicability to cable-driven tensegrity robots, facilitating the straightforward deployment of controllers on real-world robotic platforms. The system parameters are identified via experiments on our prototype tensegrity robot, with results aligning closely with theoretical analyses. In summary, our work offers a refined modeling perspective overcoming challenges in control inputs and environmental interactions, validated through prototype experiments.

Citation

  • Journal: IEEE Robotics and Automation Letters
  • Year: 2024
  • Volume: 9
  • Issue: 5
  • Pages: 4439–4446
  • Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  • DOI: 10.1109/lra.2024.3381819

BibTeX

@article{Liu_2024,
  title={{Modeling of a Six-Bar Tensegrity Robot Using the Port-Hamiltonian Framework and Experimental Validation}},
  volume={9},
  ISSN={2377-3774},
  DOI={10.1109/lra.2024.3381819},
  number={5},
  journal={IEEE Robotics and Automation Letters},
  publisher={Institute of Electrical and Electronics Engineers (IEEE)},
  author={Liu, Songyuan and Yang, Qingkai and Lv, Jingshuo and Fang, Hao},
  year={2024},
  pages={4439--4446}
}

Download the bib file

References

  • Bruce. Proc. Int. Symp. Artif. Intell., Robot. Automat. Space (2014)
  • Paul, C., Valero-Cuevas, F. J. & Lipson, H. Design and control of tensegrity robots for locomotion. IEEE Transactions on Robotics vol. 22 944–957 (2006) – 10.1109/tro.2006.878980
  • Zhao, K., Chang, J., Li, B. & Du, W. Rolling direction prediction of tensegrity robot on the slope based on FEM and GA. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science vol. 234 3846–3858 (2020) – 10.1177/0954406220916482
  • Chen, L.-H. et al. Inclined surface locomotion strategies for spherical tensegrity robots. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 4976–4981 (2017) doi:10.1109/iros.2017.8206380 – 10.1109/iros.2017.8206380
  • Du, W., Ma, S., Li, B., Wang, M. & Hirai, S. Force Analytic Method for Rolling Gaits of Tensegrity Robots. IEEE/ASME Transactions on Mechatronics vol. 21 2249–2259 (2016) – 10.1109/tmech.2016.2519559
  • Mirletz, B. T. et al. Goal-Directed CPG-Based Control for Tensegrity Spines with Many Degrees of Freedom Traversing Irregular Terrain. Soft Robotics vol. 2 165–176 (2015) – 10.1089/soro.2015.0012
  • Iscen, A., Agogino, A., SunSpiral, V. & Tumer, K. Flop and roll: Learning robust goal-directed locomotion for a Tensegrity Robot. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems 2236–2243 (2014) doi:10.1109/iros.2014.6942864 – 10.1109/iros.2014.6942864
  • Iscen, A., Agogino, A., SunSpiral, V. & Tumer, K. Controlling tensegrity robots through evolution. Proceedings of the 15th annual conference on Genetic and evolutionary computation 1293–1300 (2013) doi:10.1145/2463372.2463525 – 10.1145/2463372.2463525
  • Zhang, M. et al. Deep reinforcement learning for tensegrity robot locomotion. 2017 IEEE International Conference on Robotics and Automation (ICRA) 634–641 (2017) doi:10.1109/icra.2017.7989079 – 10.1109/icra.2017.7989079
  • Mirletz, B. T., Park, I.-W., Quinn, R. D. & SunSpiral, V. Towards bridging the reality gap between tensegrity simulation and robotic hardware. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 5357–5363 (2015) doi:10.1109/iros.2015.7354134 – 10.1109/iros.2015.7354134
  • Luo, J., Edmunds, R., Rice, F. & Agogino, A. M. Tensegrity Robot Locomotion Under Limited Sensory Inputs via Deep Reinforcement Learning. 2018 IEEE International Conference on Robotics and Automation (ICRA) 6260–6267 (2018) doi:10.1109/icra.2018.8463144 – 10.1109/icra.2018.8463144
  • Mirats Tur, J. M. & Juan, S. H. Tensegrity frameworks: Dynamic analysis review and open problems. Mechanism and Machine Theory vol. 44 1–18 (2009) – 10.1016/j.mechmachtheory.2008.06.008
  • Motro, R., Najari, S. & Jouanna, P. Static and Dynamic Analysis of Tensegrity Systems. Lecture Notes in Engineering 270–279 (1987) doi:10.1007/978-3-642-83015-0_24 – 10.1007/978-3-642-83015-0_24
  • Arsenault, M. & Gosselin, C. M. Kinematic, static and dynamic analysis of a planar 2-DOF tensegrity mechanism. Mechanism and Machine Theory vol. 41 1072–1089 (2006) – 10.1016/j.mechmachtheory.2005.10.014
  • Bel Hadj Ali, N., Rhode-Barbarigos, L., Pascual Albi, A. A. & Smith, I. F. C. Design optimization and dynamic analysis of a tensegrity-based footbridge. Engineering Structures vol. 32 3650–3659 (2010) – 10.1016/j.engstruct.2010.08.009
  • Skelton, R. E., Pinaud, J. P. & Mingori, D. L. Dynamics of the shell class of tensegrity structures. Journal of the Franklin Institute vol. 338 255–320 (2001) – 10.1016/s0016-0032(00)00078-8
  • Kanchanasaratool, N. & Williamson, D. Modelling and control of class NSP tensegrity structures. International Journal of Control vol. 75 123–139 (2002) – 10.1080/00207170110070563
  • Yang, S. Kernel-Orthogonal Control of Tensegrity Systems. IEEE/ASME Transactions on Mechatronics vol. 26 1043–1052 (2021) – 10.1109/tmech.2020.3016075
  • Graells Rovira, A. & Mirats Tur, J. M. Control and simulation of a tensegrity-based mobile robot. Robotics and Autonomous Systems vol. 57 526–535 (2009) – 10.1016/j.robot.2008.10.010
  • Nagase, K. & Skelton, R. E. Network and vector forms of tensegrity system dynamics. Mechanics Research Communications vol. 59 14–25 (2014) – 10.1016/j.mechrescom.2014.03.007
  • Goyal, R. & Skelton, R. E. Tensegrity system dynamics with rigid bars and massive strings. Multibody System Dynamics vol. 46 203–228 (2019) – 10.1007/s11044-019-09666-4
  • Hsu, S.-C., Tadiparthi, V. & Bhattacharya, R. A Lagrangian method for constrained dynamics in tensegrity systems with compressible bars. Computational Mechanics vol. 67 139–165 (2020) – 10.1007/s00466-020-01924-z
  • Ma, S., Chen, M. & Skelton, R. E. Tensegrity system dynamics based on finite element method. Composite Structures vol. 280 114838 (2022) – 10.1016/j.compstruct.2021.114838
  • Shah, D. S. et al. Tensegrity Robotics. Soft Robotics vol. 9 639–656 (2022) – 10.1089/soro.2020.0170
  • Goyal, R., Chen, M., Majji, M. & Skelton, R. MOTES: Modeling of Tensegrity Structures. Journal of Open Source Software vol. 4 1613 (2019) – 10.21105/joss.01613
  • Tadiparthi, V., Hsu, S.-C. & Bhattacharya, R. STEDY: Software for TEnsegrity DYnamics. Journal of Open Source Software vol. 4 1042 (2019) – 10.21105/joss.01042