Authors

Mohammad Babakmehr, Ravel Ammerman, Marcelo G. Simoes

Abstract

In this work a new and fast network-wide framework is addressed for modeling and tracking the dynamic behavior of transmission lines in Power Networks (PN). A sparse-based mathematical formulation for Transmission Line Dynamic Behavior Tracking (TLDBT) is formed by incorporating a PN Port-Hamiltonian model. Among the TLDBT a new set of intermediate parameters called the line dynamic index coefficients (LDIC) are defined based on the wave propagation analysis of current waves in transmission lines. It is shown how these coefficients can reflect the dynamic behavior of the transmission lines. The online monitoring of variations in these index coefficients is interpreted as an alternative approach for TLDBT in power grids. Finally, exploiting the inherent sparsity in the PN structure this TLDBT problem is reformulated as a Structured Sparse Recovery Problem (SSRP) and the TLDBT-SSRP is solved for LDICs. The simulation results indicate that the proposed framework can be considered as an alternative approach to address the new challenges in the future generation of smart power grids modeling, monitoring and congestion-management strategies.

Citation

  • Journal: 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton)
  • Year: 2016
  • Volume:
  • Issue:
  • Pages: 1298–1305
  • Publisher: IEEE
  • DOI: 10.1109/allerton.2016.7852384

BibTeX

@inproceedings{Babakmehr_2016,
  title={{Modeling and tracking Transmission Line Dynamic Behavior in Smart Grids using structured sparsity}},
  DOI={10.1109/allerton.2016.7852384},
  booktitle={{2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton)}},
  publisher={IEEE},
  author={Babakmehr, Mohammad and Ammerman, Ravel and Simoes, Marcelo G.},
  year={2016},
  pages={1298--1305}
}

Download the bib file

References

  • Sanandaji, B. M., Vincent, T. L. & Wakin, M. B. Compressive topology identification of interconnected dynamic systems via Clustered Orthogonal Matching Pursuit. IEEE Conference on Decision and Control and European Control Conference 174–180 (2011) doi:10.1109/cdc.2011.6161181 – 10.1109/cdc.2011.6161181
  • Zimmerman, R. D., Murillo-Sanchez, C. E. & Thomas, R. J. MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education. IEEE Trans. Power Syst. 26, 12–19 (2011) – 10.1109/tpwrs.2010.2051168
  • Indulkar, C. S. & Ramalingam, K. Estimation of transmission line parameters from measurements. International Journal of Electrical Power & Energy Systems 30, 337–342 (2008) – 10.1016/j.ijepes.2007.08.003
  • janecek, Transmission line identification using PMUs. Proc 10th Int Conf Environ Elect Eng (2001)
  • Kurokawa, S., Asti, G. A., Costa, E. C. M. & Pissolato, J. Simplified procedure to estimate the resistance parameters of transmission lines. Electr Eng 95, 221–227 (2012) – 10.1007/s00202-012-0255-5
  • alexander, Distribution Line Parameter Estimation Under Consideration of Measurement Tolerances. IEEE Transactions on Industrial Informatics (2016)
  • Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control 19, 477–485 (2013)10.1016/j.ejcon.2013.09.002
  • van Rossum, W. & de Wit, J. Overcomplete Dictionary Design for Building Feature Extraction. Compressive Sensing for Urban Radar 49–86 (2017) doi:10.1201/b17252-2 – 10.1201/b17252-2
  • vidmar, Block-sparse signals: uncertainty relations and efficient recovery. IEEE Transactions on Signal Processing (1992)
  • duncan glover, Power System Analysis & Design (1994)
  • Babakmehr, M., Simoes, M. G., Al-Durra, A., Harirchi, F. & Han, Q. Application of compressive sensing for distributed and structured power line outage detection in smart grids. 2015 American Control Conference (ACC) 3682–3689 (2015) doi:10.1109/acc.2015.7171902 – 10.1109/acc.2015.7171902
  • Babakmehr, M., Simoes, M. G., Wakin, M. B., Durra, A. A. & Harirchi, F. Smart-Grid Topology Identification Using Sparse Recovery. IEEE Trans. on Ind. Applicat. 52, 4375–4384 (2016) – 10.1109/tia.2016.2574767
  • Laverty, D. M. et al. The OpenPMU Platform for Open-Source Phasor Measurements. IEEE Trans. Instrum. Meas. 62, 701–709 (2013) – 10.1109/tim.2013.2240920
  • De La Ree, J., Centeno, V., Thorp, J. S. & Phadke, A. G. Synchronized Phasor Measurement Applications in Power Systems. IEEE Trans. Smart Grid 1, 20–27 (2010) – 10.1109/tsg.2010.2044815
  • Majidi, M., Arabali, A. & Etezadi-Amoli, M. Fault Location in Distribution Networks by Compressive Sensing. IEEE Trans. Power Delivery 30, 1761–1769 (2015) – 10.1109/tpwrd.2014.2357780
  • yang, Online Tracking of Transmission Line Parameters Using SCADA data. IEEE Transactions on Power Deliver (2016)
  • lan, Transmission line parameters identification based on moving-window TLS and PMU data. Proc Int Conf Adv Power Syst Auto Protect (2011)
  • Chenine, M., Ullberg, J., Nordstrom, L., Wu, Y. & Ericsson, G. N. A Framework for Wide-Area Monitoring and Control Systems Interoperability and Cybersecurity Analysis. IEEE Trans. Power Delivery 29, 633–641 (2014) – 10.1109/tpwrd.2013.2279182
  • Du, Y. & Liao, Y. On-line estimation of transmission line parameters, temperature and sag using PMU measurements. Electric Power Systems Research 93, 39–45 (2012) – 10.1016/j.epsr.2012.07.007
  • bi, Synchronized phasor based online parameter identification of overhead transmission line. Proc 3rd Int Conf Elec Util Dereg Rest Power Tech (2008)
  • Shi, D., Tylavsky, D. J., Logic, N. & Koellner, K. M. Identification of short transmission-line parameters from synchrophasor measurements. 2008 40th North American Power Symposium 1–8 (2008) doi:10.1109/naps.2008.5307354 – 10.1109/naps.2008.5307354
  • Mousavi-Seyedi, S. S., Aminifar, F. & Afsharnia, S. Parameter Estimation of Multiterminal Transmission Lines Using Joint PMU and SCADA Data. IEEE Trans. Power Delivery 30, 1077–1085 (2015) – 10.1109/tpwrd.2014.2369500
  • Yang, J., Li, W., Chen, T., Xu, W. & Wu, M. Online estimation and application of power grid impedance matrices based on synchronised phasor measurements. IET Gener. Transm. Distrib. 4, 1052–1059 (2010) – 10.1049/iet-gtd.2010.0021
  • Fang, X., Misra, S., Xue, G. & Yang, D. Smart Grid — The New and Improved Power Grid: A Survey. IEEE Commun. Surv. Tutorials 14, 944–980 (2012) – 10.1109/surv.2011.101911.00087
  • Babakmehr, M., Simoes, M. G., Wakin, M. B. & Harirchi, F. Compressive Sensing-Based Topology Identification for Smart Grids. IEEE Trans. Ind. Inf. 12, 532–543 (2016) – 10.1109/tii.2016.2520396
  • Majidi, M., Fadali, M. S., Etezadi-Amoli, M. & Oskuoee, M. Partial discharge pattern recognition via sparse representation and ANN. IEEE Trans. Dielect. Electr. Insul. 22, 1061–1070 (2015) – 10.1109/tdei.2015.7076807
  • babakmehr, Compressive Sensing for Smart Grid Security and Reliability. preprint to appear in (2016)
  • Majidi, M., Etezadi-Amoli, M. & Fadali, M. S. A Sparse-Data-Driven Approach for Fault Location in Transmission Networks. IEEE Trans. Smart Grid 1–9 (2015) doi:10.1109/tsg.2015.2493545 – 10.1109/tsg.2015.2493545
  • Arabali, A., Majidi, M., Fadali, M. S. & Etezadi-Amoli, M. Line outage identification-based state estimation in a power system with multiple line outages. Electric Power Systems Research 133, 79–86 (2016) – 10.1016/j.epsr.2015.12.013
  • Majidi, M., Etezadi-Amoli, M., H. Livani & Fadali, M. S. Distribution systems state estimation using sparsified voltage profile. Electric Power Systems Research 136, 69–78 (2016) – 10.1016/j.epsr.2016.02.017
  • Zhu, H. & Giannakis, G. B. Sparse Overcomplete Representations for Efficient Identification of Power Line Outages. IEEE Trans. Power Syst. 27, 2215–2224 (2012) – 10.1109/tpwrs.2012.2192142