Model-Based Eversion Control of Soft Growing Robots With Pneumatic Actuation
Authors
Abstract
This letter investigates the model based position control of soft growing robots with pneumatic actuation that extend according to the principle known as eversion. A dynamical model of the system which accounts for the energy of the ideal gas is presented by employing the port-Hamiltonian formulation. A new control law is constructed with an energy shaping approach. An adaptive observer is employed to compensate the effect of external forces, including that of gravity. Numerical simulations indicate that the proposed controller is superior to simpler energy shaping algorithms.
Citation
- Journal: IEEE Control Systems Letters
- Year: 2022
- Volume: 6
- Issue:
- Pages: 2689–2694
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/lcsys.2022.3175385
BibTeX
@article{Franco_2022,
title={{Model-Based Eversion Control of Soft Growing Robots With Pneumatic Actuation}},
volume={6},
ISSN={2475-1456},
DOI={10.1109/lcsys.2022.3175385},
journal={IEEE Control Systems Letters},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Franco, Enrico},
year={2022},
pages={2689--2694}
}
References
- Tutcu, C., Baydere, B. A., Talas, S. K. & Samur, E. Quasi-static modeling of a novel growing soft-continuum robot. The International Journal of Robotics Research vol. 40 86–98 (2019) – 10.1177/0278364919893438
- Ataka, A., Abrar, T., Putzu, F., Godaba, H. & Althoefer, K. Model-Based Pose Control of Inflatable Eversion Robot With Variable Stiffness. IEEE Robotics and Automation Letters vol. 5 3398–3405 (2020) – 10.1109/lra.2020.2976326
- Watson, C., Obregon, R. & Morimoto, T. K. Closed-Loop Position Control for Growing Robots Via Online Jacobian Corrections. IEEE Robotics and Automation Letters vol. 6 6820–6827 (2021) – 10.1109/lra.2021.3095625
- El-Hussieny, H., Hameed, I. A. & Ryu, J.-H. Nonlinear Model Predictive Growth Control of a Class of Plant-Inspired Soft Growing Robots. IEEE Access vol. 8 214495–214503 (2020) – 10.1109/access.2020.3041616
- Della Santina, C., Katzschmann, R. K., Bicchi, A. & Rus, D. Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment. The International Journal of Robotics Research vol. 39 490–513 (2020) – 10.1177/0278364919897292
- Franco, E., Garriga-Casanovas, A., Tang, J., Rodriguez y Baena, F. & Astolfi, A. Adaptive Energy Shaping Control of a Class of Nonlinear Soft Continuum Manipulators. IEEE/ASME Transactions on Mechatronics vol. 27 280–291 (2022) – 10.1109/tmech.2021.3063121
- Franco, E. Energy Shaping Control of Hydraulic Soft Continuum Planar Manipulators. IEEE Control Systems Letters vol. 6 1748–1753 (2022) – 10.1109/lcsys.2021.3133128
- Franco, E., Ayatullah, T., Sugiharto, A., Garriga-Casanovas, A. & Virdyawan, V. Nonlinear energy-based control of soft continuum pneumatic manipulators. Nonlinear Dynamics vol. 106 229–253 (2021) – 10.1007/s11071-021-06817-1
- Stölzle, M. & Santina, C. D. Piston-Driven Pneumatically-Actuated Soft Robots: Modeling and Backstepping Control. IEEE Control Systems Letters vol. 6 1837–1842 (2022) – 10.1109/lcsys.2021.3134165
- blumenschein, Modeling of Bioinspired apical extension in a soft robot. Living Machines (2017)
- Berthet-Rayne, P. et al. MAMMOBOT: A Miniature Steerable Soft Growing Robot for Early Breast Cancer Detection. IEEE Robotics and Automation Letters vol. 6 5056–5063 (2021) – 10.1109/lra.2021.3068676
- der Maur, P. A. et al. RoBoa: Construction and Evaluation of a Steerable Vine Robot for Search and Rescue Applications. 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft) 15–20 (2021) doi:10.1109/robosoft51838.2021.9479192 – 10.1109/robosoft51838.2021.9479192
- Takahashi, T., Watanabe, M., Tadakuma, K., Konyo, M. & Tadokoro, S. Retraction Mechanism of Soft Torus Robot With a Hydrostatic Skeleton. IEEE Robotics and Automation Letters vol. 5 6900–6907 (2020) – 10.1109/lra.2020.3019736
- Jeong, S.-G. et al. A Tip Mount for Transporting Sensors and Tools using Soft Growing Robots. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 8781–8788 (2020) doi:10.1109/iros45743.2020.9340950 – 10.1109/iros45743.2020.9340950
- Blumenschein, L. H. et al. Geometric Solutions for General Actuator Routing on Inflated-Beam Soft Growing Robots. IEEE Transactions on Robotics vol. 38 1820–1840 (2022) – 10.1109/tro.2021.3115230
- Greer, J. D., Blumenschein, L. H., Alterovitz, R., Hawkes, E. W. & Okamura, A. M. Robust navigation of a soft growing robot by exploiting contact with the environment. The International Journal of Robotics Research vol. 39 1724–1738 (2020) – 10.1177/0278364920903774
- Greer, J. D., Morimoto, T. K., Okamura, A. M. & Hawkes, E. W. A Soft, Steerable Continuum Robot That Grows via Tip Extension. Soft Robotics vol. 6 95–108 (2019) – 10.1089/soro.2018.0034
- Hawkes, E. W., Blumenschein, L. H., Greer, J. D. & Okamura, A. M. A soft robot that navigates its environment through growth. Science Robotics vol. 2 (2017) – 10.1126/scirobotics.aan3028
- Blumenschein, L. H., Coad, M. M., Haggerty, D. A., Okamura, A. M. & Hawkes, E. W. Design, Modeling, Control, and Application of Everting Vine Robots. Frontiers in Robotics and AI vol. 7 (2020) – 10.3389/frobt.2020.548266
- Joshi, S., Sonar, H. & Paik, J. Flow Path Optimization for Soft Pneumatic Actuators: Towards Optimal Performance and Portability. IEEE Robotics and Automation Letters vol. 6 7949–7956 (2021) – 10.1109/lra.2021.3100626
- Tao, G. A simple alternative to the Barbalat lemma. IEEE Transactions on Automatic Control vol. 42 698 (1997) – 10.1109/9.580878
- Astolfi, A. & Ortega, R. Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Transactions on Automatic Control vol. 48 590–606 (2003) – 10.1109/tac.2003.809820
- khalil, Nonlinear Systems (1996)
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control vol. 47 1218–1233 (2002) – 10.1109/tac.2002.800770