Lumped port–Hamiltonian burning plasma control model
Authors
Benjamin Vincent, Remy Nouailletas, Jean-Francois Artaud, Nicolas Hudon, Laurent Lefevre, Denis Dochain
Abstract
In this contribution, we apply a spatial structure– preserving discretization scheme to a 1–D burning plasma model. The plasma dynamics are defined by a set of coupled conservation laws evolving in different physical domains, matching the port–Hamiltonian formalism in infinite dimension. This model describes the time evolution of magnetic, thermic, and material plasma profiles. A structure–preserving spectral collocation method is used to discretize the set of Partial Differential Equations (PDEs) into a finite–dimensional port– Hamiltonian system, a set of Ordinary Differential Equations (ODEs). The discretization scheme relies on the conservation of energy, based upon the transformation of Stokes–Dirac structures onto Dirac ones. Transport models and couplings are chosen to match with the experimental Tokamak ITER. Among the couplings, we include bootstrap and ohmic currents, ion–electron collision energy, radiation loses, and the fusion reaction. The obtained control model is compared with two steady–state operation points obtained from a physics–oriented plasma simulator.
Citation
- Journal: 2019 IEEE 58th Conference on Decision and Control (CDC)
- Year: 2019
- Volume:
- Issue:
- Pages: 6869–6874
- Publisher: IEEE
- DOI: 10.1109/cdc40024.2019.9029939
BibTeX
@inproceedings{Vincent_2019,
title={{Lumped port–Hamiltonian burning plasma control model}},
DOI={10.1109/cdc40024.2019.9029939},
booktitle={{2019 IEEE 58th Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Vincent, Benjamin and Nouailletas, Remy and Artaud, Jean-Francois and Hudon, Nicolas and Lefevre, Laurent and Dochain, Denis},
year={2019},
pages={6869--6874}
}
References
- Vincent, B., Hudon, N., Lefèvre, L. & Dochain, D. Port-Hamiltonian observer design for plasma profile estimation in tokamaks. IFAC-PapersOnLine 49, 93–98 (2016) – 10.1016/j.ifacol.2016.10.761
- Vincent, B., Hudon, N., Lefèvre, L. & Dochain, D. Burning magneto-hydrodynamics plasmas model: A port-based modelling approach. IFAC-PapersOnLine 50, 13038–13043 (2017) – 10.1016/j.ifacol.2017.08.2002
- Vincent, B., Vu, T., Hudon, N., Lefèvre, L. & Dochain, D. Port-Hamiltonian modeling and reduction of a burning plasma system. IFAC-PapersOnLine 51, 68–73 (2018) – 10.1016/j.ifacol.2018.06.017
- Vu, N. M. T., Lefèvre, L. & Maschke, B. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Mathematical and Computer Modelling of Dynamical Systems 22, 181–206 (2016) – 10.1080/13873954.2016.1154874
- Vu, N. M. T., Lefèvre, L., Nouailletas, R. & Brémond, S. Symplectic spatial integration schemes for systems of balance equations. Journal of Process Control 51, 1–17 (2017) – 10.1016/j.jprocont.2016.12.005
- trang vu, Plasma internal profile control using IDA–PBC: Application to TCV. Fusion Engineering and Design (2017)
- wesson, Tokamaks (2004)
- Witrant, E. et al. A control-oriented model of the current profile in tokamak plasma. Plasma Phys. Control. Fusion 49, 1075–1105 (2007) – 10.1088/0741-3335/49/7/009
- Humphreys, D. et al. Novel aspects of plasma control in ITER. Physics of Plasmas 22, (2015) – 10.1063/1.4907901
- Boyer, M. D. & Schuster, E. Nonlinear burn condition control in tokamaks using isotopic fuel tailoring. Nucl. Fusion 55, 083021 (2015) – 10.1088/0029-5515/55/8/083021
- Moulla, R., Lefèvre, L. & Maschke, B. Geometric pseudospectral method for spatial integration of dynamical systems. Mathematical and Computer Modelling of Dynamical Systems 17, 85–104 (2011) – 10.1080/13873954.2010.537524
- Artaud, J. F. et al. Metis: a fast integrated tokamak modelling tool for scenario design. Nucl. Fusion 58, 105001 (2018) – 10.1088/1741-4326/aad5b1
- Sauter, O., Angioni, C. & Lin-Liu, Y. R. Erratum: “Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime” [Phys. Plasmas 6, 2834 (1999)]. Physics of Plasmas 9, 5140–5140 (2002) – 10.1063/1.1517052
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Bosch, H.-S. & Hale, G. M. Improved formulas for fusion cross-sections and thermal reactivities. Nucl. Fusion 32, 611–631 (1992) – 10.1088/0029-5515/32/4/i07
- blum, Numerical Simulation and Optimal Control in Plasma Physics with Applications to Tokamaks (1989)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3