Learning port-Hamiltonian Systems—Algorithms
Authors
D. Lozienko, V. Salnikov, A. Falaize
Abstract
In this article we study the possibilities of recovering the structure of port-Hamiltonian systems starting from “unlabelled” ordinary differential equations describing mechanical systems. The algorithm we suggest solves the problem in two phases. It starts by constructing the connectivity structure of the system using machine learning methods – producing thus a graph of interconnected subsystems. Then this graph is enhanced by recovering the Hamiltonian structure of each subsystem as well as the corresponding ports. This second phase relies heavily on results from symplectic and Poisson geometry that we briefly sketch. And the precise solutions can be constructed using methods of computer algebra and symbolic computations. The algorithm permits to extend the port-Hamiltonian formalism to generic ordinary differential equations, hence introducing eventually a new concept of normal forms of ODEs.
Citation
- Journal: Журнал вычислительной математики и математической физики
- Year: 2024
- Volume: 63
- Issue: 1
- Pages: 165–174
- Publisher: The Russian Academy of Sciences
- DOI: 10.31857/s0044466923010106
BibTeX
@article{Lozienko_2023,
title={{Learning port-Hamiltonian Systems—Algorithms}},
volume={63},
ISSN={0044-4669},
DOI={10.31857/s0044466923010106},
number={1},
journal={Журнал вычислительной математики и математической физики},
publisher={The Russian Academy of Sciences},
author={Lozienko, D. and Salnikov, V. and Falaize, A.},
year={2023},
pages={165--174}
}
References
- Salnikov, V., Hamdouni, A. & Loziienko, D. Generalized and graded geometry for mechanics: a comprehensive introduction. Math. Mech. Compl. Sys. 9, 59–75 (2021) – 10.2140/memocs.2021.9.59
- Verlet, L. Computer ‘Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 159, 98–103 (1967) – 10.1103/physrev.159.98
- Yoshida, H. Construction of higher order symplectic integrators. Physics Letters A 150, 262–268 (1990) – 10.1016/0375-9601(90)90092-3
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute 329, 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/65 – 10.4171/022-3/65
- Сальников, В. Н. & Хамдуни, А. ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ И МЕХАНИКА – ИСТОЧНИК ЗАДАЧ ДЛЯ КОМПЬЮТЕРНОЙ АЛГЕБРЫ. Программирование 60–66 (2020) doi:10.31857/s0132347420020107 – 10.31857/s0132347420020107
- Falaize, A. & Hélie, T. Passive Guaranteed Simulation of Analog Audio Circuits: A Port-Hamiltonian Approach. Applied Sciences 6, 273 (2016) – 10.3390/app6100273
- Falaize, A. & Hélie, T. Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano. Journal of Sound and Vibration 390, 289–309 (2017) – 10.1016/j.jsv.2016.11.008
- Evripidou, C. A., Kassotakis, P. & Vanhaecke, P. Integrable deformations of the Bogoyavlenskij–Itoh Lotka–Volterra systems. Regul. Chaot. Dyn. 22, 721–739 (2017) – 10.1134/s1560354717060090
- Leclercq, T. & de Langre, E. Vortex-induced vibrations of cylinders bent by the flow. Journal of Fluids and Structures 80, 77–93 (2018) – 10.1016/j.jfluidstructs.2018.03.008
- Salnikov, V. N. & Hamdouni, A. Differential Geometry and Mechanics: A Source for Computer Algebra Problems. Program Comput Soft 46, 126–132 (2020) – 10.1134/s0361768820020097