Learning physical laws: the case of micron size particles in dielectric fluid
Authors
Ion Matei, Maksym Zhenirovskyy, Johan de Kleer, Christoforos Somarakis, John S. Baras
Abstract
We address the problem of learning laws governing the behavior of physical systems. As a use case we choose the discovery of the dynamics of micron-scale chiplets in dielectric fluid whose motion is controlled by a set of electric potential. We use the port-Hamiltonian formalism as a high level model structure that is continuously refined based on our understanding of the physical process. In addition, we use machine learning inspired models as low level representations. Representation structure is key in learning generalizable models, as shown by the learning results.
Citation
- Journal: 2020 American Control Conference (ACC)
- Year: 2020
- Volume:
- Issue:
- Pages: 2949–2954
- Publisher: IEEE
- DOI: 10.23919/acc45564.2020.9147716
BibTeX
@inproceedings{Matei_2020,
title={{Learning physical laws: the case of micron size particles in dielectric fluid}},
DOI={10.23919/acc45564.2020.9147716},
booktitle={{2020 American Control Conference (ACC)}},
publisher={IEEE},
author={Matei, Ion and Zhenirovskyy, Maksym and de Kleer, Johan and Somarakis, Christoforos and Baras, John S.},
year={2020},
pages={2949--2954}
}
References
- Matei, I. et al. Towards printing as an electronics manufacturing method: Micro-scale chiplet position control. 2017 American Control Conference (ACC) 1549–1555 (2017) doi:10.23919/acc.2017.7963173 – 10.23919/acc.2017.7963173
- mouchet, Applications of Noether conservation theorem to Hamiltonian systems. Annals of Physics (2015)
- Schwichtenberg, J. Physics from Symmetry. Undergraduate Lecture Notes in Physics (Springer International Publishing, 2015). doi:10.1007/978-3-319-19201-7 – 10.1007/978-3-319-19201-7
- van der schaft, Proceedings of the International Congress of Mathematicians Vol III (2006)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Chow, E. M. et al. Micro-object assembly with an optically addressed array. 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) 682–685 (2017) doi:10.1109/transducers.2017.7994140 – 10.1109/transducers.2017.7994140
- paszke, On Automatic Differentiation (2017)
- Hydon, P. E. Symmetry Methods for Differential Equations. (2000) doi:10.1017/cbo9780511623967 – 10.1017/cbo9780511623967
- Lu, J. P. et al. Open and closed loop manipulation of charged microchiplets in an electric field. Applied Physics Letters vol. 105 (2014) – 10.1063/1.4891957
- Maschke, B. M. & van der Schaft, A. J. PORT-CONTROLLED HAMILTONIAN SYSTEMS: MODELLING ORIGINS AND SYSTEMTHEORETIC PROPERTIES. Nonlinear Control Systems Design 1992 359–365 (1993) doi:10.1016/b978-0-08-041901-5.50064-6 – 10.1016/b978-0-08-041901-5.50064-6
- maclaurin, Autograd: Effortless gradients in numpy. AutoML Workshop at ICML 2015 (2015)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Baras, J. S. Group invariance and symmetries in nonlinear control and estimation. Lecture Notes in Control and Information Sciences 137–169 doi:10.1007/bfb0110214 – 10.1007/bfb0110214
- Matei, I. et al. Micro-Scale Chiplets Position Control. Journal of Microelectromechanical Systems vol. 28 643–655 (2019) – 10.1109/jmems.2019.2914045