Learning Data-Driven PCHD Models for Control Engineering Applications*
Authors
Annika Junker, Julia Timmermann, Ansgar Trächtler
Abstract
The design of control engineering applications usually requires a model that accurately represents the dynamics of the real system. In addition to classical physical modeling, powerful data-driven approaches are increasingly used. However, the resulting models are not necessarily in a form that is advantageous for controller design. In the control engineering domain, it is highly beneficial if the system dynamics is given in PCHD form (Port-Controlled Hamiltonian Systems with Dissipation) because globally stable control laws can be easily realized while physical interpretability is guaranteed. In this work, we exploit the advantages of both strategies and present a new framework to obtain nonlinear high accurate system models in a data-driven way that are directly in PCHD form. We demonstrate the success of our method by model-based application on an academic example, as well as experimentally on a test bed.
Keywords
PCHD; passivity; hybrid modeling; system identification; nonlinear control
Citation
- Journal: IFAC-PapersOnLine
- Year: 2022
- Volume: 55
- Issue: 12
- Pages: 389–394
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2022.07.343
- Note: 14th IFAC Workshop on Adaptive and Learning Control Systems ALCOS 2022- Casablanca, Morocco, June 29 – July 01, 2022
BibTeX
@article{Junker_2022,
title={{Learning Data-Driven PCHD Models for Control Engineering Applications*}},
volume={55},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2022.07.343},
number={12},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Junker, Annika and Timmermann, Julia and Trächtler, Ansgar},
year={2022},
pages={389--394}
}
References
- Anderson, B. A simplified viewpoint of hyperstability. IEEE Trans. Automat. Contr. 13, 292–294 (1968) – 10.1109/tac.1968.1098910
- Brunton, S. L., Brunton, B. W., Proctor, J. L. & Kutz, J. N. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control. PLoS ONE 11, e0150171 (2016) – 10.1371/journal.pone.0150171
- Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. U.S.A. 113, 3932–3937 (2016) – 10.1073/pnas.1517384113
- Byrnes, C. I., Isidori, A. & Willems, J. C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans. Automat. Contr. 36, 1228–1240 (1991) – 10.1109/9.100932
- Gillis, N., Karow, M. & Sharma, P. Approximating the nearest stable discrete-time system. Linear Algebra and its Applications 573, 37–53 (2019) – 10.1016/j.laa.2019.03.014
- Gillis, N. & Sharma, P. On computing the distance to stability for matrices using linear dissipative Hamiltonian systems. Automatica 85, 113–121 (2017) – 10.1016/j.automatica.2017.07.047
- Junker, Data-driven models for control engineering applications using the Koopman operator (accepted). (2022)
- Khalil, (2015)
- Koopman, Hamiltonian systems and transformations in Hilbert space. (1931)
- Korda, M. & Mezić, I. Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica 93, 149–160 (2018) – 10.1016/j.automatica.2018.03.046
- Kotyczka, Parametrization of IDA-PBC by assignment of local linear dynamics. (2009)
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Contr. 45, 1498–1502 (2000) – 10.1109/9.871758
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes 25, 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Popov, The solution of a new stability problem for controlled systems. Avtomat. i Telemekh. (1963)
- Popov, Hyperstability of control systems. Grundlehren der mathematischen Wis-senschaften. Editura Academiei (1973)
- Proctor, J. L., Brunton, S. L. & Kutz, J. N. Dynamic Mode Decomposition with Control. SIAM J. Appl. Dyn. Syst. 15, 142–161 (2016) – 10.1137/15m1013857
- SCHMID, P. J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010) – 10.1017/s0022112010001217
- Sepulchre, (1997)
- Williams, M. O., Kevrekidis, I. G. & Rowley, C. W. A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition. J Nonlinear Sci 25, 1307–1346 (2015) – 10.1007/s00332-015-9258-5