Irreversible port Hamiltonian systems
Authors
Héctor Ramirez, Bernhard Maschke, Daniel Sbarbaro
Abstract
A class of quasi port Hamiltonian system expressing the first and second principle of thermodynamic as a structural property is defined, namely Irreversible PHS. The IPHS is defined by: a generating function that for physical systems corresponds to the total energy; a constant skew-symmetric structure matrix that represents the network structure of the system; a non-linear function that depends on the states and co-states and on the Poisson bracket of the generating function and some entropy function. For physical systems this Poisson bracket defines the thermodynamic driving force. The IPHS is completed with input and output ports. IPHS encompasses a large set of thermodynamic systems, including heat exchangers and chemical reactors. The non-isothermal CSTR is used to illustrate the formalism.
Keywords
Irreversible port Hamiltonian systems; Quasi Hamiltonian system; Irreversible thermodynamics; CSTR; Process control
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2012
- Volume: 45
- Issue: 19
- Pages: 13–18
- Publisher: Elsevier BV
- DOI: 10.3182/20120829-3-it-4022.00014
- Note: 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control
BibTeX
@article{Ramirez_2012,
title={{Irreversible port Hamiltonian systems}},
volume={45},
ISSN={1474-6670},
DOI={10.3182/20120829-3-it-4022.00014},
number={19},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Ramirez, Héctor and Maschke, Bernhard and Sbarbaro, Daniel},
year={2012},
pages={13--18}
}
References
- Alonso, A. A. & Erik Ydstie, B. Process systems, passivity and the second law of thermodynamics. Computers & Chemical Engineering 20, S1119–S1124 (1996) – 10.1016/0098-1354(96)00194-9
- Alonso, A. A. & Ydstie, B. E. Stabilization of distributed systems using irreversible thermodynamics. Automatica 37, 1739–1755 (2001) – 10.1016/s0005-1098(01)00140-6
- Aris, (1989)
- Couenne, F., Jallut, C., Maschke, B., Breedveld, P. C. & Tayakout, M. Bond graph modelling for chemical reactors. Mathematical and Computer Modelling of Dynamical Systems 12, 159–174 (2006) – 10.1080/13873950500068823
- Couenne, F., Jallut, C., Maschke, B., Tayakout, M. & Breedveld, P. Bond graph for dynamic modelling in chemical engineering. Chemical Engineering and Processing: Process Intensification 47, 1994–2003 (2008) – 10.1016/j.cep.2007.09.006
- Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control 19, 1413–1426 (2009) – 10.1016/j.jprocont.2009.07.015
- (2009)
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics 60, 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Favache, A. & Dochain, D. Thermodynamics and chemical systems stability: The CSTR case study revisited. Journal of Process Control 19, 371–379 (2009) – 10.1016/j.jprocont.2008.07.007
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science 65, 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- Favache, A., Dochain, D. & Winkin, J. J. Power-shaping control: Writing the system dynamics into the Brayton–Moser form. Systems & Control Letters 60, 618–624 (2011) – 10.1016/j.sysconle.2011.04.021
- Hangos, K. M., Bokor, J. & Szederkényi, G. Hamiltonian view on process systems. AIChE Journal 47, 1819–1831 (2001) – 10.1002/aic.690470813
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control 21, 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Jongschaap, R. & Öttinger, H. C. The mathematical representation of driven thermodynamic systems. Journal of Non-Newtonian Fluid Mechanics 120, 3–9 (2004) – 10.1016/j.jnnfm.2003.11.008
- Kondepudi, (1998)
- Libermann, (1987)
- Marle, On submanifolds and quotients of Poisson and Jacobi manifolds. Banach center publications (2000)
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes 25, 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute 329, 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Oster, G. F. & Perelson, A. S. Chemical reaction dynamics. Arch. Rational Mech. Anal. 55, 230–274 (1974) – 10.1007/bf00281751
- Otero-Muras, I., Szederkényi, G., Alonso, A. A. & Hangos, K. M. Local dissipative Hamiltonian description of reversible reaction networks. Systems & Control Letters 57, 554–560 (2008) – 10.1016/j.sysconle.2007.12.003
- Otero-Muras, I., Szederkényi, G., Alonso, A. A. & Hangos, K. M. Local dissipative Hamiltonian description of reversible reaction networks. Systems & Control Letters 57, 554–560 (2008) – 10.1016/j.sysconle.2007.12.003
- Prigogine, (1952)
- Ramirez, (2012)
- Ramírez, H., Sbarbaro, D. & Ortega, R. On the control of non-linear processes: An IDA–PBC approach. Journal of Process Control 19, 405–414 (2009) – 10.1016/j.jprocont.2008.06.018
- Sandler, (2006)
- Sbarbaro, D. & Ortega, R. Averaging level control: An approach based on mass balance. Journal of Process Control 17, 621–629 (2007) – 10.1016/j.jprocont.2007.01.005
- Sira-Ramirez, H. & Angulo-Nunez, M. I. Passivity-based control of nonlinear chemical processes. International Journal of Control 68, 971–996 (1997) – 10.1080/002071797223163
- Smale, S. On the mathematical foundations of electrical circuit theory. J. Differential Geom. 7, (1972) – 10.4310/jdg/1214430827
- van der Schaft, Model based control: bridging rigorous theory and advanced technology. (2009)
- van der Schaft, (2000)