Global structures of clew-shaped conservative chaotic flows in a class of 3D one-thermostat systems
Authors
Shijian Cang, Gehang Zhao, Zenghui Wang, Zengqiang Chen
Abstract
Inspired by the structure of the single-clew-shaped conservative chaotic flows generated from the Nosé–Hoover oscillator, the possible local dynamic behaviors of the thermostatted oscillator are discovered near the axis of the clew-shaped chaotic flows. Based on the formalism of the port-controlled Hamiltonian system, we propose a variant of the Nosé–Hoover oscillator, which denotes a class of 3D one-thermostat systems and satisfies the canonical probability distribution. Then, three example systems are constructed to demonstrate the global structures with one-, two- and eight-clew conservative chaotic flows. Numerical results show that the different global structures depend on both the system’s Hamiltonian that determines the basic shape of clew-shaped conservative chaotic flows and the curves of equilibrium points that contain the axis of each clew.
Keywords
conservative chaos, global structure, hamiltonian, nosé–hoover oscillator, one-thermostat system
Citation
- Journal: Chaos, Solitons & Fractals
- Year: 2022
- Volume: 154
- Issue:
- Pages: 111687
- Publisher: Elsevier BV
- DOI: 10.1016/j.chaos.2021.111687
BibTeX
@article{Cang_2022,
title={{Global structures of clew-shaped conservative chaotic flows in a class of 3D one-thermostat systems}},
volume={154},
ISSN={0960-0779},
DOI={10.1016/j.chaos.2021.111687},
journal={Chaos, Solitons & Fractals},
publisher={Elsevier BV},
author={Cang, Shijian and Zhao, Gehang and Wang, Zenghui and Chen, Zengqiang},
year={2022},
pages={111687}
}References
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Landa, (2001)
- Lorenz, E. N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 20, 130–141 (1963) – 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
- Matsumoto, T. A chaotic attractor from Chua’s circuit. IEEE Trans. Circuits Syst. 31, 1055–1058 (1984) – 10.1109/tcs.1984.1085459
- Thompson, (2002)
- Kobrin, B. et al. Many-Body Chaos in the Sachdev-Ye-Kitaev Model. Phys. Rev. Lett. 126, (2021) – 10.1103/physrevlett.126.030602
- Devolder, T. et al. Chaos in Magnetic Nanocontact Vortex Oscillators. Phys. Rev. Lett. 123, (2019) – 10.1103/physrevlett.123.147701
- Holmes, P. Poincaré, celestial mechanics, dynamical-systems theory and “chaos”. Physics Reports 193, 137–163 (1990) – 10.1016/0370-1573(90)90012-q
- Lutsko, J. F. Molecular Chaos, Pair Correlations, and Shear-Induced Ordering of Hard Spheres. Phys. Rev. Lett. 77, 2225–2228 (1996) – 10.1103/physrevlett.77.2225
- Shankar, Hydrodynamics of active defects: from order to chaos to defect ordering. Phys Rev X (2019)
- Zhou, M. & Wang, C. A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks. Signal Processing 171, 107484 (2020) – 10.1016/j.sigpro.2020.107484
- Cang, S., Kang, Z. & Wang, Z. Pseudo-random number generator based on a generalized conservative Sprott-A system. Nonlinear Dyn 104, 827–844 (2021) – 10.1007/s11071-021-06310-9
- Henon, M. & Heiles, C. The applicability of the third integral of motion: Some numerical experiments. The Astronomical Journal 69, 73 (1964) – 10.1086/109234
- Gandhimathi, V. M., Murali, K. & Rajasekar, S. Stochastic resonance with different periodic forces in overdamped two coupled anharmonic oscillators. Chaos, Solitons & Fractals 30, 1034–1047 (2006) – 10.1016/j.chaos.2005.09.046
- Budanur, N. B. & Fleury, M. State space geometry of the chaotic pilot-wave hydrodynamics. Chaos: An Interdisciplinary Journal of Nonlinear Science 29, (2019) – 10.1063/1.5058279
- Hoover, Wm. G., Aoki, K., Hoover, C. G. & De Groot, S. V. Time-reversible deterministic thermostats. Physica D: Nonlinear Phenomena 187, 253–267 (2004) – 10.1016/j.physd.2003.09.016
- Legoll, F., Luskin, M. & Moeckel, R. Non-Ergodicity of the Nosé–Hoover Thermostatted Harmonic Oscillator. Arch Rational Mech Anal 184, 449–463 (2006) – 10.1007/s00205-006-0029-1
- Emelianova, A. A. & Nekorkin, V. I. The third type of chaos in a system of two adaptively coupled phase oscillators. Chaos: An Interdisciplinary Journal of Nonlinear Science 30, (2020) – 10.1063/5.0009525
- Deng, Y. & Li, Y. A memristive conservative chaotic circuit consisting of a memristor and a capacitor. Chaos: An Interdisciplinary Journal of Nonlinear Science 30, (2020) – 10.1063/1.5128384
- Tuckerman, M. E., Liu, Y., Ciccotti, G. & Martyna, G. J. Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems. The Journal of Chemical Physics 115, 1678–1702 (2001) – 10.1063/1.1378321
- Ezra, G. S. Reversible measure-preserving integrators for non-Hamiltonian systems. The Journal of Chemical Physics 125, (2006) – 10.1063/1.2215608
- Verbeek, M. G. Cosine law for the atomically rough nanopore: Modeling lattice vibrations with a modified Lowe-Andersen thermostat. Phys. Rev. E 99, (2019) – 10.1103/physreve.99.013309
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics 81, 511–519 (1984) – 10.1063/1.447334
- Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985) – 10.1103/physreva.31.1695
- Evans, D. J. & Holian, B. L. The Nose–Hoover thermostat. The Journal of Chemical Physics 83, 4069–4074 (1985) – 10.1063/1.449071
- Martyna, G. J., Klein, M. L. & Tuckerman, M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. The Journal of Chemical Physics 97, 2635–2643 (1992) – 10.1063/1.463940
- Lemak, A. S. & Balabaev, N. K. On The Berendsen Thermostat. Molecular Simulation 13, 177–187 (1994) – 10.1080/08927029408021981
- Golo, V. L., Salnikov, Vl. N. & Shaitan, K. V. Harmonic oscillators in the Nosé-Hoover environment. Phys. Rev. E 70, (2004) – 10.1103/physreve.70.046130
- Messias, M. & Reinol, A. C. On the formation of hidden chaotic attractors and nested invariant tori in the Sprott A system. Nonlinear Dyn 88, 807–821 (2016) – 10.1007/s11071-016-3277-0
- Hoover, W. G., Sprott, J. C. & Hoover, C. G. Ergodicity of a singly-thermostated harmonic oscillator. Communications in Nonlinear Science and Numerical Simulation 32, 234–240 (2016) – 10.1016/j.cnsns.2015.08.020
- D. Tapias, A. Bravetti, & D. Sanders. Ergodicity of One-dimensional Systems Coupled to the Logistic Thermostat. ICHB PAS Poznan Supercomputing and Networking Center https://doi.org/10.12921/CMST.2016.0000061 (2017) doi:10.12921/CMST.2016.0000061 – 10.12921/cmst.2016.0000061
- Yalçin, M. E., Özoğuz, S., Suykens, J. A. K. & Vandewalle, J. n-scroll chaos generators: a simple circuitmodel. Electron. Lett. 37, 147–148 (2001) – 10.1049/el:20010114
- Deng, Q. & Wang, C. Multi-scroll hidden attractors with two stable equilibrium points. Chaos: An Interdisciplinary Journal of Nonlinear Science 29, (2019) – 10.1063/1.5116732
- Ahmad, S., Ullah, A. & Akgül, A. Investigating the complex behaviour of multi-scroll chaotic system with Caputo fractal-fractional operator. Chaos, Solitons & Fractals 146, 110900 (2021) – 10.1016/j.chaos.2021.110900
- Cui, L., Lu, M., Ou, Q., Duan, H. & Luo, W. Analysis and Circuit Implementation of Fractional Order Multi-wing Hidden Attractors. Chaos, Solitons & Fractals 138, 109894 (2020) – 10.1016/j.chaos.2020.109894
- Li, Y., Li, Z., Ma, M. & Wang, M. Generation of grid multi-wing chaotic attractors and its application in video secure communication system. Multimed Tools Appl 79, 29161–29177 (2020) – 10.1007/s11042-020-09448-7
- Yu, S., Lu, J. & Chen, G. Theoretical Design and Circuit Implementation of Multidirectional Multi-Torus Chaotic Attractors. IEEE Trans. Circuits Syst. I 54, 2087–2098 (2007) – 10.1109/tcsi.2007.904651
- Xie, Generation of multi-torus chaotic attractors from a novel fourth-order system. (2008)
- Wang, F. et al. Physical Layer Encryption in DMT Based on Digital Multi-Scroll Chaotic System. IEEE Photon. Technol. Lett. 32, 1303–1306 (2020) – 10.1109/lpt.2020.3021797
- Ye, X., Wang, X., Gao, S., Mou, J. & Wang, Z. A new random diffusion algorithm based on the multi-scroll Chua’s chaotic circuit system. Optics and Lasers in Engineering 127, 105905 (2020) – 10.1016/j.optlaseng.2019.105905
- Cang, S., Li, Y., Kang, Z. & Wang, Z. Generating multicluster conservative chaotic flows from a generalized Sprott-A system. Chaos, Solitons & Fractals 133, 109651 (2020) – 10.1016/j.chaos.2020.109651
- Cang, S., Li, Y., Kang, Z. & Wang, Z. A generic method for constructing n-fold covers of 3D conservative chaotic systems. Chaos: An Interdisciplinary Journal of Nonlinear Science 30, (2020) – 10.1063/1.5123246
- Sprott, J. C., Hoover, W. G. & Hoover, C. G. Heat conduction, and the lack thereof, in time-reversible dynamical systems: Generalized Nosé-Hoover oscillators with a temperature gradient. Phys. Rev. E 89, (2014) – 10.1103/physreve.89.042914
- Wang, L. & Yang, X.-S. A vast amount of various invariant tori in the Nosé-Hoover oscillator. Chaos: An Interdisciplinary Journal of Nonlinear Science 25, (2015) – 10.1063/1.4937167
- Swinnerton-Dyer, P. & Wagenknecht, T. Some third-order ordinary differential equations. Bulletin of the London Mathematical Society 40, 725–748 (2008) – 10.1112/blms/bdn046
- Llibre, J., Messias, M. & Reinol, A. C. Global Dynamics and Bifurcation of Periodic Orbits in a Modified Nosé-Hoover Oscillator. J Dyn Control Syst 27, 491–506 (2020) – 10.1007/s10883-020-09491-5
- Sergi, A. & Ferrario, M. Non-Hamiltonian equations of motion with a conserved energy. Phys. Rev. E 64, (2001) – 10.1103/physreve.64.056125
- Sergi, A. & Petruccione, F. Nosè–Hoover dynamics in quantum phase space. J. Phys. A: Math. Theor. 41, 355304 (2008) – 10.1088/1751-8113/41/35/355304
- Sergi, A. & Ezra, G. S. Bulgac-Kusnezov-Nosé-Hoover thermostats. Phys. Rev. E 81, (2010) – 10.1103/physreve.81.036705
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52, 479–487 (1988) – 10.1007/bf01016429
- Fukuda, I. & Nakamura, H. Tsallis dynamics using the Nosé-Hoover approach. Phys. Rev. E 65, (2002) – 10.1103/physreve.65.026105
- Bravetti, A. & Tapias, D. Thermostat algorithm for generating target ensembles. Phys. Rev. E 93, (2016) – 10.1103/physreve.93.022139
- Milanović, Lj., Posch, H. A. & Hoover, Wm. G. Lyapunov instability of two-dimensional fluids: Hard dumbbells. Chaos: An Interdisciplinary Journal of Nonlinear Science 8, 455–461 (1998) – 10.1063/1.166326
- Posch, H. A. & Hoover, W. G. Lyapunov instability of dense Lennard-Jones fluids. Phys. Rev. A 38, 473–482 (1988) – 10.1103/physreva.38.473
- Hoover, W. G., Hoover, C. G. & Posch, H. A. Lyapunov instability of pendulums, chains, and strings. Phys. Rev. A 41, 2999–3004 (1990) – 10.1103/physreva.41.2999
- Dellago, Ch., Posch, H. A. & Hoover, W. G. Lyapunov instability in a system of hard disks in equilibrium and nonequilibrium steady states. Phys. Rev. E 53, 1485–1501 (1996) – 10.1103/physreve.53.1485
- Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena 16, 285–317 (1985) – 10.1016/0167-2789(85)90011-9
- Wm.G. Hoover & C.G. Hoover. Singly-Thermostated Ergodicity in Gibbs’ Canonical Ensemble and the 2016 Ian Snook Prize. ICHB PAS Poznan Supercomputing and Networking Center https://doi.org/10.12921/CMST.2016.0000037 (2016) doi:10.12921/CMST.2016.0000037 – 10.12921/cmst.2016.0000037