Geometric discretization for a plasma control model
Authors
N.M.T. VU, L. LEFEVRE, R. NOUAILLETAS, S. BREMOND
Abstract
we define a family of geometric discretization methods for the reduction of a 1D distributed parameters systems of conservation laws and apply these methods to the reduction of plasma control model written in Port-Controlled Hamiltonian (PCH) form. In these discrete schemes, variables are projected into appropriate bases in order to perform exact spatial differentiation. We show that some spectral and energetical properties are therefore preserved. A geometric (symplectic) collocation scheme using Lagrange polynomials is investigated. Numerical results show oscillations in the transient response in case of non homogeneous boundary conditions or sharp distributed control. A second symplectic spectral scheme using Bessel conjugated bases is then derived which allows a more accurate approximation of eigenfunctions and reduces the unwanted numerical oscillations. Finally, the proposed numerical integration of the control model is validated against experimental data from the tokamak Tore Supra.
Keywords
distributed parameters systems, geometric discretization, plasma control, port-controlled hamiltonian systems, pseudo-spectral methods, symplectic methods
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2013
- Volume: 46
- Issue: 2
- Pages: 755–760
- Publisher: Elsevier BV
- DOI: 10.3182/20130204-3-fr-2033.00098
- Note: 5th IFAC Symposium on System Structure and Control
BibTeX
@article{VU_2013,
title={{Geometric discretization for a plasma control model}},
volume={46},
ISSN={1474-6670},
DOI={10.3182/20130204-3-fr-2033.00098},
number={2},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={VU, N.M.T. and LEFEVRE, L. and NOUAILLETAS, R. and BREMOND, S.},
year={2013},
pages={755--760}
}References
- Artaud, J. F. et al. The CRONOS suite of codes for integrated tokamak modelling. Nucl. Fusion 50, 043001 (2010) – 10.1088/0029-5515/50/4/043001
- Blum, (1989)
- Moreau, Ph. et al. Plasma Control in Tore Supra. Fusion Science and Technology 56, 1284–1299 (2009) – 10.13182/fst09-a9178
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics 231, 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 53, 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Sauter, Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime. Physic of Plasma (1999)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Vu, Port-hamiltonian formulation for systems of conservation laws: application to plasma dynamics in tokamak reactors. (2012)
- Wesson, (2004)
- Witrant, E. et al. A control-oriented model of the current profile in tokamak plasma. Plasma Phys. Control. Fusion 49, 1075–1105 (2007) – 10.1088/0741-3335/49/7/009