Fourth‐order force‐gradient splitting for linear port‐Hamiltonian systems
Authors
Marius Mönch, Nicole Marheineke
Abstract
The port‐Hamiltonian (pH) approach offers a modeling of dynamic systems with an energy‐conserving and a dissipative part. pH systems are passive. That means no energy can be generated within the system. A passive system cannot store more energy than it receives. The exact solution of the pH system hence fulfills the dissipation inequality. In this paper, we deal with operator splitting that considers the energy‐conserving and dissipative parts separately. We aim at high‐order splitting schemes that preserve the dissipation inequality. Fourth‐order methods for linear pH systems are derived and an extension to sixth‐order methods is discussed.
Citation
- Journal: PAMM
- Year: 2024
- Volume: 24
- Issue: 3
- Pages:
- Publisher: Wiley
- DOI: 10.1002/pamm.202400132
BibTeX
@article{M_nch_2024,
title={{Fourth‐order force‐gradient splitting for linear port‐Hamiltonian systems}},
volume={24},
ISSN={1617-7061},
DOI={10.1002/pamm.202400132},
number={3},
journal={PAMM},
publisher={Wiley},
author={Mönch, Marius and Marheineke, Nicole},
year={2024}
}
References
- Arnal, A., Casas, F. & Chiralt, C. A Note on the Baker–Campbell–Hausdorff Series in Terms of Right-Nested Commutators. Mediterr. J. Math. 18, (2021) – 10.1007/s00009-020-01681-6
- Blanes, S. & Casas, F. On the necessity of negative coefficients for operator splitting schemes of order higher than two. Applied Numerical Mathematics 54, 23–37 (2005) – 10.1016/j.apnum.2004.10.005
- Blanes, S., Diele, F., Marangi, C. & Ragni, S. Splitting and composition methods for explicit time dependence in separable dynamical systems. Journal of Computational and Applied Mathematics 235, 646–659 (2010) – 10.1016/j.cam.2010.06.018
- Celledoni, E., Høiseth, E. H. & Ramzina, N. Passivity-preserving splitting methods for rigid body systems. Multibody Syst Dyn 44, 251–275 (2018) – 10.1007/s11044-018-9628-5
- Chin, S. A. Symplectic integrators from composite operator factorizations. Physics Letters A 226, 344–348 (1997) – 10.1016/s0375-9601(97)00003-0
- Chin, S. A. Structure of positive decompositions of exponential operators. Phys. Rev. E 71, (2005) – 10.1103/physreve.71.016703
- Chin, S. A. & Chen, C. R. Forward Symplectic Integrators for Solving Gravitational Few-Body Problems. Celestial Mech Dyn Astr 91, 301–322 (2005) – 10.1007/s10569-004-4622-z
- Chin, S. A. & Chen, C. R. Fourth order gradient symplectic integrator methods for solving the time-dependent Schrödinger equation. The Journal of Chemical Physics 114, 7338–7341 (2001) – 10.1063/1.1362288
- Hairer, E., Wanner, G. & Lubich, C. Numerical Integrators. Springer Series in Computational Mathematics 27–50 doi:10.1007/3-540-30666-8_2 – 10.1007/3-540-30666-8_2
- Kieri, E. Stiff convergence of force-gradient operator splitting methods. Applied Numerical Mathematics 94, 33–45 (2015) – 10.1016/j.apnum.2015.03.005
- McLachlan, R. I. & Quispel, G. R. W. Splitting methods. Acta Numerica 11, 341–434 (2002) – 10.1017/s0962492902000053
- Omelyan, I. P., Mryglod, I. M. & Folk, R. Construction of high-order force-gradient algorithms for integration of motion in classical and quantum systems. Phys. Rev. E 66, (2002) – 10.1103/physreve.66.026701
- Suzuki, M. General theory of fractal path integrals with applications to many-body theories and statistical physics. Journal of Mathematical Physics 32, 400–407 (1991) – 10.1063/1.529425
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002