Fixed-time stabilization control for port-Hamiltonian systems
Authors
Abstract
In this paper, the locally fixed-time and globally fixed-time stabilization problems for the port-Hamiltonian (PH) systems via the interconnection and damping assignment passivity-based control technique are discussed. The definitions of fixed-time stability region (or region of attraction) and fixed-time stability boundary are given in this paper. From this starting point, the sufficient condition of globally fixed-time attractivity of a prespecified locally fixed-time stability region is obtained. Combining the locally fixed-time stability and the globally fixed-time attractivity of a prespecified locally fixed-time stability region, the globally fixed-time stabilization problem for PH system is effectively solved. Furthermore, the globally fixed-time control scheme independent of locally fixed-time stability region has also been derived by constructing a novel Lyapunov function. A illustrative example shows that the results obtained in this paper work very well in fixed-time control design of PH systems.
Keywords
Fixed-time stability region; Port-Hamiltonian systems; Fixed-time attractivity; Stability boundary at infinity
Citation
- Journal: Nonlinear Dynamics
- Year: 2019
- Volume: 96
- Issue: 2
- Pages: 1497–1509
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s11071-019-04867-0
BibTeX
@article{Liu_2019,
title={{Fixed-time stabilization control for port-Hamiltonian systems}},
volume={96},
ISSN={1573-269X},
DOI={10.1007/s11071-019-04867-0},
number={2},
journal={Nonlinear Dynamics},
publisher={Springer Science and Business Media LLC},
author={Liu, Xinggui and Liao, Xiaofeng},
year={2019},
pages={1497--1509}
}
References
- Couenne, F., Jallut, C., Maschke, B., Tayakout, M. & Breedveld, P. Bond graph for dynamic modelling in chemical engineering. Chemical Engineering and Processing: Process Intensification vol. 47 1994–2003 (2008) – 10.1016/j.cep.2007.09.006
- Multidomain modeling of nonlinear networks and systems. IEEE Control Systems vol. 29 28–59 (2009) – 10.1109/mcs.2009.932927
- Macchelli, A.: Port Hamiltonian systems: a unified approach for modeling and control finite and infinite dimensional physical systems. Ph.D. thesis, University of Bologna-DEIS, Bologna, Italy (2003)
- Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control vol. 19 1413–1426 (2009) – 10.1016/j.jprocont.2009.07.015
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Cai, L., He, Y. & Wu, M. On the effects of desired damping matrix and desired Hamiltonian function in the matching equation for Port–Hamiltonian systems. Nonlinear Dynamics vol. 72 91–99 (2012) – 10.1007/s11071-012-0693-7
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control vol. 47 1218–1233 (2002) – 10.1109/tac.2002.800770
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Bhat, S. P. & Bernstein, D. S. Finite-Time Stability of Continuous Autonomous Systems. SIAM Journal on Control and Optimization vol. 38 751–766 (2000) – 10.1137/s0363012997321358
- Dorato, P.: Short time stability in linear time-varying systems. In: Proceedings of the IRE International Convention Record Part 4, New York, pp. 83-87 (1961)
- Moulay, E. & Perruquetti, W. Finite time stability and stabilization of a class of continuous systems. Journal of Mathematical Analysis and Applications vol. 323 1430–1443 (2006) – 10.1016/j.jmaa.2005.11.046
- Haimo, V. T. Finite Time Controllers. SIAM Journal on Control and Optimization vol. 24 760–770 (1986) – 10.1137/0324047
- Liu, X., Ho, D. W. C., Cao, J. & Xu, W. Discontinuous Observers Design for Finite-Time Consensus of Multiagent Systems With External Disturbances. IEEE Transactions on Neural Networks and Learning Systems vol. 28 2826–2830 (2017) – 10.1109/tnnls.2016.2599199
- Liu, X., Cao, J., Yu, W. & Song, Q. Nonsmooth Finite-Time Synchronization of Switched Coupled Neural Networks. IEEE Transactions on Cybernetics vol. 46 2360–2371 (2016) – 10.1109/tcyb.2015.2477366
- Xu, C. et al. Finite-Time Synchronization of Networks via Quantized Intermittent Pinning Control. IEEE Transactions on Cybernetics vol. 48 3021–3027 (2018) – 10.1109/tcyb.2017.2749248
- Yang, X., Cao, J., Xu, C. & Feng, J. Finite-time stabilization of switched dynamical networks with quantized couplings via quantized controller. Science China Technological Sciences vol. 61 299–308 (2017) – 10.1007/s11431-016-9054-y
- Sun, L., Feng, G. & Wang, Y. Finite-time stabilization and $H^\infty$ control for a class of nonlinear Hamiltonian descriptor systems with application to affine nonlinear descriptor systems. Automatica vol. 50 2090–2097 (2014) – 10.1016/j.automatica.2014.05.031
- Wang, Y., Feng, G.: Finite-time stabilization of port-controlled Hamiltonian systems with application to nonlinear affine systems. In: Proceedings of the 2008 American Control Conference, Washington, USA, pp. 1202–1207 (2008)
- Yang, R. & Wang, Y. Finite-time stability analysis and $H^\infty$ control for a class of nonlinear time-delay Hamiltonian systems. Automatica vol. 49 390–401 (2013) – 10.1016/j.automatica.2012.11.034
- Cruz-Zavala, E., Moreno, J. A. & Fridman, L. Uniform Second-Order Sliding Mode Observer for mechanical systems. 2010 11th International Workshop on Variable Structure Systems (VSS) 14–19 (2010) doi:10.1109/vss.2010.5544656 – 10.1109/vss.2010.5544656
- Engel, R. & Kreisselmeier, G. A continuous-time observer which converges in finite time. IEEE Transactions on Automatic Control vol. 47 1202–1204 (2002) – 10.1109/tac.2002.800673
- James, M. R. Finite time observers and observability. 29th IEEE Conference on Decision and Control 770–771 vol.2 (1990) doi:10.1109/cdc.1990.203692 – 10.1109/cdc.1990.203692
- Raff, T. & Allgöwer, F. An Observer that Converges in Finite Time Due to Measurement-based State Updates. IFAC Proceedings Volumes vol. 41 2693–2695 (2008) – 10.3182/20080706-5-kr-1001.00453
- Polyakov, A. Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems. IEEE Transactions on Automatic Control vol. 57 2106–2110 (2012) – 10.1109/tac.2011.2179869
- Polyakov, A., Efimov, D. & Perruquetti, W. Finite-time and fixed-time stabilization: Implicit Lyapunov function approach. Automatica vol. 51 332–340 (2015) – 10.1016/j.automatica.2014.10.082
- Polyakov, A., Efimov, D. & Perruquetti, W. Robust stabilization of MIMO systems in finite/fixed time. International Journal of Robust and Nonlinear Control vol. 26 69–90 (2015) – 10.1002/rnc.3297
- Parsegov, S., Polyakov, A. & Shcherbakov, P. Nonlinear fixed-time control protocol for uniform allocation of agents on a segment. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) 7732–7737 (2012) doi:10.1109/cdc.2012.6426570 – 10.1109/cdc.2012.6426570
- Parsegov, S. E., Polyakov, A. E. & Shcherbakov, P. S. Fixed-time Consensus Algorithm for Multi-agent Systems with Integrator Dynamics. IFAC Proceedings Volumes vol. 46 110–115 (2013) – 10.3182/20130925-2-de-4044.00055
- Zuo, Z. & Tie, L. A new class of finite-time nonlinear consensus protocols for multi-agent systems. International Journal of Control vol. 87 363–370 (2013) – 10.1080/00207179.2013.834484
- Zuo, Z. & Tie, L. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. International Journal of Systems Science vol. 47 1366–1375 (2014) – 10.1080/00207721.2014.925608
- Zuo, Z. Non‐singular fixed‐time terminal sliding mode control of non‐linear systems. IET Control Theory & Applications vol. 9 545–552 (2015) – 10.1049/iet-cta.2014.0202
- Wan, Y., Cao, J., Wen, G. & Yu, W. Robust fixed-time synchronization of delayed Cohen–Grossberg neural networks. Neural Networks vol. 73 86–94 (2016) – 10.1016/j.neunet.2015.10.009
- Yang, X., Lam, J., Ho, D. W. C. & Feng, Z. Fixed-Time Synchronization of Complex Networks With Impulsive Effects via Nonchattering Control. IEEE Transactions on Automatic Control vol. 62 5511–5521 (2017) – 10.1109/tac.2017.2691303