Existence of Solutions to the Hamilton–Jacobi–Bellman Equation under Quadratic Growth Conditions
Authors
Abstract
In this paper we show the existence of solutions with quadratic growth to Hamilton–Jacobi–Bellman equations. We assume that the Hamiltonian has the quadratic growth both in x and p. We obtain the explicit Lipschitz bound of solutions in the weighted sup-norm. Also, we discuss the vanishing viscosity limit of solutions and show the existence of viscosity solutions to the resulting Hamilton–Jacobi equation.
Citation
- Journal: Journal of Differential Equations
- Year: 2001
- Volume: 176
- Issue: 1
- Pages: 1–28
- Publisher: Elsevier BV
- DOI: 10.1006/jdeq.2000.3980
BibTeX
@article{Ito_2001,
title={{Existence of Solutions to the Hamilton–Jacobi–Bellman Equation under Quadratic Growth Conditions}},
volume={176},
ISSN={0022-0396},
DOI={10.1006/jdeq.2000.3980},
number={1},
journal={Journal of Differential Equations},
publisher={Elsevier BV},
author={Ito, Kazufumi},
year={2001},
pages={1--28}
}
References
- Bensoussan, A. Some Results on Risk-Sensitive Control with Full Observation. Applied Mathematics and Optimization vol. 37 1–41 (1998) – 10.1007/s002459900067
- Brezis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. (1970)
- Crandall, M. G., Evans, L. C. & Lions, P.-L. Some properties of viscosity solutions of Hamilton-Jacobi equations. Transactions of the American Mathematical Society vol. 282 487–502 (1984) – 10.1090/s0002-9947-1984-0732102-x
- Crandall, M. G. & Liggett, T. M. Generation of Semi-Groups of Nonlinear Transformations on General Banach Spaces. American Journal of Mathematics vol. 93 265 (1971) – 10.2307/2373376
- G. CRANDALL, M., ISHII, H. & LIONS, P.-L. Uniqueness of viscosity solutions of Hamilton-Jacobi equations revisited. Journal of the Mathematical Society of Japan vol. 39 (1987) – 10.2969/jmsj/03940581
- Crandall, M. G. & Lions, P.-L. Viscosity solutions of Hamilton-Jacobi equations. Transactions of the American Mathematical Society vol. 277 1–42 (1983) – 10.1090/s0002-9947-1983-0690039-8
- Fleming, (1992)
- Fleming, W. H. & McEneaney, W. M. Risk-Sensitive Control on an Infinite Time Horizon. SIAM Journal on Control and Optimization vol. 33 1881–1915 (1995) – 10.1137/s0363012993258720
- Ishii, H. Indiana University Mathematics Journal vol. 33 721 (1984) – 10.1512/iumj.1984.33.33038
- McEneaney, W. M. Uniqueness for Viscosity Solutions of Nonstationary Hamilton–Jacobi–Bellman Equations under Some a Priori Conditions (with Applications). SIAM Journal on Control and Optimization vol. 33 1560–1576 (1995) – 10.1137/s0363012994262695
- McEneaney, W. M. & Ito, K. Infinite time-horizon risk sensitive systems with quadratic growth. Proceedings of the 36th IEEE Conference on Decision and Control vol. 4 3413–3418 – 10.1109/cdc.1997.652375
- Pazy, (1983)
- Tanabe, (1979)