Authors

Kazufumi Ito

Abstract

In this paper we show the existence of solutions with quadratic growth to Hamilton–Jacobi–Bellman equations. We assume that the Hamiltonian has the quadratic growth both in x and p. We obtain the explicit Lipschitz bound of solutions in the weighted sup-norm. Also, we discuss the vanishing viscosity limit of solutions and show the existence of viscosity solutions to the resulting Hamilton–Jacobi equation.

Citation

  • Journal: Journal of Differential Equations
  • Year: 2001
  • Volume: 176
  • Issue: 1
  • Pages: 1–28
  • Publisher: Elsevier BV
  • DOI: 10.1006/jdeq.2000.3980

BibTeX

@article{Ito_2001,
  title={{Existence of Solutions to the Hamilton–Jacobi–Bellman Equation under Quadratic Growth Conditions}},
  volume={176},
  ISSN={0022-0396},
  DOI={10.1006/jdeq.2000.3980},
  number={1},
  journal={Journal of Differential Equations},
  publisher={Elsevier BV},
  author={Ito, Kazufumi},
  year={2001},
  pages={1--28}
}

Download the bib file

References

  • Bensoussan, A. Some Results on Risk-Sensitive Control with Full Observation. Applied Mathematics and Optimization vol. 37 1–41 (1998) – 10.1007/s002459900067
  • Brezis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. (1970)
  • Crandall, M. G., Evans, L. C. & Lions, P.-L. Some properties of viscosity solutions of Hamilton-Jacobi equations. Transactions of the American Mathematical Society vol. 282 487–502 (1984) – 10.1090/s0002-9947-1984-0732102-x
  • Crandall, M. G. & Liggett, T. M. Generation of Semi-Groups of Nonlinear Transformations on General Banach Spaces. American Journal of Mathematics vol. 93 265 (1971) – 10.2307/2373376
  • G. CRANDALL, M., ISHII, H. & LIONS, P.-L. Uniqueness of viscosity solutions of Hamilton-Jacobi equations revisited. Journal of the Mathematical Society of Japan vol. 39 (1987) – 10.2969/jmsj/03940581
  • Crandall, M. G. & Lions, P.-L. Viscosity solutions of Hamilton-Jacobi equations. Transactions of the American Mathematical Society vol. 277 1–42 (1983)10.1090/s0002-9947-1983-0690039-8
  • Fleming, (1992)
  • Fleming, W. H. & McEneaney, W. M. Risk-Sensitive Control on an Infinite Time Horizon. SIAM Journal on Control and Optimization vol. 33 1881–1915 (1995) – 10.1137/s0363012993258720
  • Ishii, H. Indiana University Mathematics Journal vol. 33 721 (1984) – 10.1512/iumj.1984.33.33038
  • McEneaney, W. M. Uniqueness for Viscosity Solutions of Nonstationary Hamilton–Jacobi–Bellman Equations under Some a Priori Conditions (with Applications). SIAM Journal on Control and Optimization vol. 33 1560–1576 (1995) – 10.1137/s0363012994262695
  • McEneaney, W. M. & Ito, K. Infinite time-horizon risk sensitive systems with quadratic growth. Proceedings of the 36th IEEE Conference on Decision and Control vol. 4 3413–3418 – 10.1109/cdc.1997.652375
  • Pazy, (1983)
  • Tanabe, (1979)