Viscosity solutions of Hamilton-Jacobi equations
Authors
Michael G. Crandall, Pierre-Louis Lions
Abstract
Problems involving Hamilton-Jacobi equations—which we take to be either of the stationary form
Citation
- Journal: Transactions of the American Mathematical Society
- Year: 2010
- Volume: 277
- Issue: 1
- Pages: 1–42
- Publisher: American Mathematical Society (AMS)
- DOI: 10.1090/s0002-9947-1983-0690039-8
BibTeX
@article{Crandall_1983,
title={{Viscosity solutions of Hamilton-Jacobi equations}},
volume={277},
ISSN={1088-6850},
DOI={10.1090/s0002-9947-1983-0690039-8},
number={1},
journal={Transactions of the American Mathematical Society},
publisher={American Mathematical Society (AMS)},
author={Crandall, Michael G. and Lions, Pierre-Louis},
year={1983},
pages={1--42}
}
References
- Aizawa, Sadakazu, A semigroup treatment of the Hamilton-Jacobi equation in several space variables. Hiroshima Math. J. (1976)
- Barbu, V. Nonlinear Semigroups and Differential Equations in Banach Spaces. (Springer Netherlands, 1976). doi:10.1007/978-94-010-1537-0 – 10.1007/978-94-010-1537-0
- Beck, Anatole, Uniqueness of flow solutions of differential equations. (1973)
- Benton, Stanley H., Jr., The Hamilton-Jacobi equation (1977)
- Bony, Jean-Michel, Principe du maximum dans les espaces de Sobolev. C. R. Acad. Sci. Paris S'{e}r. A-B (1967)
- Conway, E. D., Hamilton’s theory and generalized solutions of the Hamilton-Jacobi equation. J. Math. Mech. (1964)
- Crandall, Michael G., An introduction to evolution governed by accretive operators. (1976)
- Crandall, Michael G., Condition d’unicité pour les solutions généralisées des équations de Hamilton-Jacobi du premier ordre. C. R. Acad. Sci. Paris S'{e}r. I Math. (1981)
- Douglis, A. The continuous dependence of generalized solutions of non‐linear partial differential equations upon initial data. Communications on Pure and Applied Mathematics vol. 14 267–284 (1961) – 10.1002/cpa.3160140307
- Evans, L. C. On solving certain nonlinear partial differential equations by accretive operator methods. Israel Journal of Mathematics vol. 36 225–247 (1980) – 10.1007/bf02762047
- Evans, Lawrence C., Application of nonlinear semigroup theory to certain partial differential equations. (1978)
- Fleming, W. H. The Cauchy problem for a nonlinear first order partial differential equation. Journal of Differential Equations vol. 5 515–530 (1969) – 10.1016/0022-0396(69)90091-6
- Fleming, Wendell H., The Cauchy problem for degenerate parabolic equations. J. Math. Mech. (1964)
- Friedman, A. The Cauchy Problem for First Order Partial Differential Equations. Indiana University Mathematics Journal vol. 23 27–40 (1973) – 10.1512/iumj.1973.23.23004
- Hopf, E. On the Right Weak Solution of the Cauchy Problem for a Quasilinear Equation of First Order. Indiana University Mathematics Journal vol. 19 483–487 (1969) – 10.1512/iumj.1970.19.19045
- Kružkov, S. N. GENERALIZED SOLUTIONS OF THE HAMILTON-JACOBI EQUATIONS OF EIKONAL TYPE. I. FORMULATION OF THE PROBLEMS; EXISTENCE, UNIQUENESS AND STABILITY THEOREMS; SOME PROPERTIES OF THE SOLUTIONS. Mathematics of the USSR-Sbornik vol. 27 406–446 (1975) – 10.1070/sm1975v027n03abeh002522
- Kružkov, S. N., Generalized solutions of nonlinear equations of the first order with several variables. I. Mat. Sb. (N.S.) (1966)
- Kružkov, S. N. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES. Mathematics of the USSR-Sbornik vol. 10 217–243 (1970) – 10.1070/sm1970v010n02abeh002156
- Lions, Pierre-Louis, Generalized solutions of Hamilton-Jacobi equations (1982)
- Lions, P. L. Control of diffusion processes in RN. Communications on Pure and Applied Mathematics vol. 34 121–147 (1981) – 10.1002/cpa.3160340106
- Oleĭnik, O. A. Discontinuous solutions of non-linear differential equations. American Mathematical Society Translations: Series 2 95–172 (1963) doi:10.1090/trans2/026/05 – 10.1090/trans2/026/05
- Vol′pert, A. I., Spaces 𝐵𝑉 and quasilinear equations. Mat. Sb. (N.S.) (1967)
- Crandall, M. G., Evans, L. C. & Lions, P.-L. Some properties of viscosity solutions of Hamilton-Jacobi equations. Transactions of the American Mathematical Society vol. 282 487–502 (1984) – 10.2307/1999247