Estimation of passivity margins of hydrogen-based hybrid renewable energy systems via energy tanks
Authors
Solene Houria Chaabna, Jean-Yves Dieulot, Sumit Sood
Abstract
This paper proposes new tools to design models and controllers for power systems. Within the port-Hamiltonian modeling framework, concepts that extend passivity margins and energy tanks are used to estimate power reserves in Hybrid Renewable Energy Systems. The methodology is applied to multi-source cells with renewable energy dedicated to the production of clean hydrogen. This work can be extended to more complex networked power systems, with the aim to increase the reliability of standalone networks by fitting the power demands while avoiding damage and extending lifetime of the equipment.
Citation
- Journal: 2020 28th Mediterranean Conference on Control and Automation (MED)
- Year: 2020
- Volume:
- Issue:
- Pages: 758–763
- Publisher: IEEE
- DOI: 10.1109/med48518.2020.9182805
BibTeX
@inproceedings{Chaabna_2020,
title={{Estimation of passivity margins of hydrogen-based hybrid renewable energy systems via energy tanks}},
DOI={10.1109/med48518.2020.9182805},
booktitle={{2020 28th Mediterranean Conference on Control and Automation (MED)}},
publisher={IEEE},
author={Chaabna, Solene Houria and Dieulot, Jean-Yves and Sood, Sumit},
year={2020},
pages={758--763}
}
References
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Abdallah, I., Gehin, A.-L. & Ould Bouamama, B. Event driven Hybrid Bond Graph for Hybrid Renewable Energy Systems part I: Modelling and operating mode management. International Journal of Hydrogen Energy vol. 43 22088–22107 (2018) – 10.1016/j.ijhydene.2017.10.144
- Ferraguti, F. et al. An Energy Tank-Based Interactive Control Architecture for Autonomous and Teleoperated Robotic Surgery. IEEE Transactions on Robotics vol. 31 1073–1088 (2015) – 10.1109/tro.2015.2455791
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Raiola, G., Cardenas, C. A., Tadele, T. S., de Vries, T. & Stramigioli, S. Development of a Safety- and Energy-Aware Impedance Controller for Collaborative Robots. IEEE Robotics and Automation Letters vol. 3 1237–1244 (2018) – 10.1109/lra.2018.2795639
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Donaire, A. & Junco, S. Derivation of Input-State-Output Port-Hamiltonian Systems from bond graphs. Simulation Modelling Practice and Theory vol. 17 137–151 (2009) – 10.1016/j.simpat.2008.02.007
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- ZHOU, T. & FRANCOIS, B. Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system. International Journal of Hydrogen Energy vol. 34 21–30 (2009) – 10.1016/j.ijhydene.2008.10.030
- golo, Hamiltonian formulation of bond graphs. Nonlinear and Hybrid Systems in Automotive Control (2003)
- Agbli, K. S., Hissel, D., Péra, M.-C. & Doumbia, I. EMR modelling of a hydrogen-based electrical energy storage. The European Physical Journal Applied Physics vol. 54 23404 (2011) – 10.1051/epjap/2010100272