Energy-based hybrid excitation control for synchronous generators
Authors
Abstract
This paper presents an energy-based hybrid control, which replaces the traditional automatic voltage regulator (AVR) for excitation control of a synchronous generator connected to an infinite power system. The proposed controller is based on energy representation of the power system by using a port-controlled Hamiltonian form. The controller uses a hierarchical hybrid architecture characterized by continuous-time dynamics at the lower level of the hierarchy and logical decision-making units at the higher level of the hierarchy. The lower-level units, i.e., the subcontrollers, are each designed for a power system operating mode and directly interact with the power system to be controlled; while the higher-level decision-making units perform logical checks that identify system mode of operation and activates the corresponding lower-level unit; the activated lower-level unit then executes continuous control actions for the power system. Consequently, the controller can adapt to different power system operating modes. Simulation studies are carried out to show the effectiveness of the proposed controller for excitation control of the synchronous generator.
Citation
- Journal: IEEE PES General Meeting
- Year: 2010
- Volume:
- Issue:
- Pages: 1–6
- Publisher: IEEE
- DOI: 10.1109/pes.2010.5589516
BibTeX
@inproceedings{Wei_Qiao_2010,
title={{Energy-based hybrid excitation control for synchronous generators}},
DOI={10.1109/pes.2010.5589516},
booktitle={{IEEE PES General Meeting}},
publisher={IEEE},
author={Wei Qiao and Qing Hui},
year={2010},
pages={1--6}
}
References
- Jinyu Wen, Shijie Cheng & Malik, O. P. A synchronous generator fuzzy excitation controller optimally designed with a genetic algorithm. IEEE Trans. Power Syst. 13, 884–889 (1998) – 10.1109/59.708763
- Lown, M., Swidenbank, E. & Hogg, B. W. Adaptive fuzzy logic control of a turbine generator system. IEEE Trans. On energy Conversion 12, 394–399 (1997) – 10.1109/60.638957
- Hasan, A. R., Martis, T. S. & Ula, A. H. M. S. Design and implementation of a fuzzy controller based automatic voltage regulator for a synchronous generator. IEEE Trans. On energy Conversion 9, 550–557 (1994) – 10.1109/60.326475
- Hiyama, T., Miyazaki, K. & Satoh, H. A fuzzy logic excitation system for stability enhancement of power systems with multi-mode oscillations. IEEE Trans. On energy Conversion 11, 449–454 (1996) – 10.1109/60.507659
- Transient stabilization of multimachine power systems with nontrivial transfer conductances. IEEE Trans. Automat. Contr. 50, 60–75 (2005) – 10.1109/tac.2004.840477
- Hui, Q. & Qiao, W. Stabilization of multimachine power systems via hybrid control. 2009 American Control Conference 2110–2115 (2009) doi:10.1109/acc.2009.5160066 – 10.1109/acc.2009.5160066
- Yoke Lin Tan & Youyi Wang. Augmentation of transient stability using a superconducting coil and adaptive nonlinear control. IEEE Trans. Power Syst. 13, 361–366 (1998) – 10.1109/59.667352
- Wang, Y., Guo, G. & Hill, D. J. Robust decentralized nonlinear controller design for multimachine power systems. Automatica 33, 1725–1733 (1997) – 10.1016/s0005-1098(97)00091-5
- Shen, T., Mei, S., Lu, Q., Hu, W. & Tamura, K. Adaptive nonlinear excitation control with L2 disturbance attenuation for power systems. Automatica 39, 81–89 (2003) – 10.1016/s0005-1098(02)00175-9
- Haddad, W. M. & Chellaboina, V. Nonlinear Dynamical Systems and Control. (2008) doi:10.1515/9781400841042 – 10.1515/9781400841042
- Magnusson, P. C. The Transient-Energy Method of Calculating Stability. Trans. Am. Inst. Electr. Eng. 66, 747–755 (1947) – 10.1109/t-aiee.1947.5059502
- Pai, M. A. Energy Function Analysis for Power System Stability. (Springer US, 1989). doi:10.1007/978-1-4613-1635-0 – 10.1007/978-1-4613-1635-0
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Galaz, M., Ortega, R., Bazanella, A. S. & Stankovic, A. M. An energy-shaping approach to the design of excitation control of synchronous generators. Automatica 39, 111–119 (2003) – 10.1016/s0005-1098(02)00177-2
- Transient stabilization of multimachine power systems with nontrivial transfer conductances. IEEE Trans. Automat. Contr. 50, 60–75 (2005) – 10.1109/tac.2004.840477
- Jung-Wook Park, Harley, R. G. & Venayagamoorthy, G. K. Adaptive-critic-based optimal neurocontrol for synchronous generators in a power system using MLP/RBF neural networks. IEEE Trans. on Ind. Applicat. 39, 1529–1540 (2003) – 10.1109/tia.2003.816493
- Chapman, J. W., Ilic, M. D., King, C. A., Eng, L. & Kaufman, H. Stabilizing a multimachine power system via decentralized feedback linearizing excitation control. IEEE Trans. Power Syst. 8, 830–839 (1993) – 10.1109/59.260921
- Venayagamoorthy, G. K., Harley, R. G. & Wunsch, D. C. Implementation of adaptive critic-based neurocontrollers for turbogenerators in a multimachine power system. IEEE Trans. Neural Netw. 14, 1047–1064 (2003) – 10.1109/tnn.2003.816054
- King, C. A., Chapman, J. W. & Ilic, M. D. Feedback linearizing excitation control on a full-scale power system model. IEEE Trans. Power Syst. 9, 1102–1109 (1994) – 10.1109/59.317620
- Mielczarski, W. & Zajaczkowski, A. M. Nonlinear field voltage control of a synchronous generator using feedback linearization. Automatica 30, 1625–1630 (1994) – 10.1016/0005-1098(94)90102-3
- Hassan, M. A. M., Malik, O. P. & Hope, G. S. A fuzzy logic based stabilizer for a synchronous machine. IEEE Trans. On energy Conversion 6, 407–413 (1991) – 10.1109/60.84314
- Wang, Y., Hill, D. J., Middleton, R. H. & Gao, L. Transient stability enhancement and voltage regulation of power systems. IEEE Trans. Power Syst. 8, 620–627 (1993) – 10.1109/59.260819
- Jain, S., Khorrami, F. & Fardanesh, B. Adaptive nonlinear excitation control of power systems with unknown interconnections. IEEE Trans. Contr. Syst. Technol. 2, 436–446 (1994) – 10.1109/87.338663
- Akhrif, O., Okou, F.-A., Dessaint, L.-A. & Champagne, R. Application of a multivariable feedback linearization scheme for rotor angle stability and voltage regulation of power systems. IEEE Trans. Power Syst. 14, 620–628 (1999) – 10.1109/59.761889
- Lu, Q., Sun, Y., Xu, Z. & Mochizuki, T. Decentralized nonlinear optimal excitation control. IEEE Trans. Power Syst. 11, 1957–1962 (1996) – 10.1109/59.544670
- Wang, Y., Hill, D. J., Middleton, R. H. & Gao, L. Transient stabilization of power systems with an adaptive control law. Automatica 30, 1409–1413 (1994) – 10.1016/0005-1098(94)90005-1
- Lu, Q. & Sun, Y. Z. Nonlinear stabilizing control of multimachine systems. IEEE Trans. Power Syst. 4, 236–241 (1989) – 10.1109/59.32483
- Wu, Q. H., Hogg, B. W. & Irwin, G. W. A neural network regulator for turbogenerators. IEEE Trans. Neural Netw. 3, 95–100 (1992) – 10.1109/72.105421
- Young-Moon Park, Seung-Ho Hyun & Jin-Ho Lee. A synchronous generator stabilizer design using neuro inverse controller and error reduction network. IEEE Trans. Power Syst. 11, 1969–1975 (1996) – 10.1109/59.544672
- Kobayashi, T. & Yokoyama, A. An adaptive neuro-control system of synchronous generator for power system stabilization. IEEE Trans. On energy Conversion 11, 621–630 (1996) – 10.1109/60.537034
- Swidenbank, E. et al. Neural network based control for synchronous generators. IEEE Trans. On energy Conversion 14, 1673–1678 (1999) – 10.1109/60.815122
- He, J. & Malik, O. P. An adaptive power system stabilizer based on recurrent neural networks. IEEE Trans. On energy Conversion 12, 413–418 (1997) – 10.1109/60.638966
- Venayagamoorthy, G. K. & Harley, R. G. A continually online trained neurocontroller for excitation and turbine control of a turbogenerator. IEEE Trans. Energy Convers. 16, 261–269 (2001) – 10.1109/60.937206
- Shamsollahi, P. & Malik, O. P. Direct neural adaptive control applied to synchronous generator. IEEE Trans. On energy Conversion 14, 1341–1346 (1999) – 10.1109/60.815070