Energy‐based excitation control of doubly‐fed induction wind generator for optimum wind energy capture
Authors
Abstract
A novel nonlinear energy‐based excitation controlling strategy for variable‐speed doubly‐fed induction wind generator (DFIWG) is proposed in this paper. From the consideration of physical nature and energy flow of the DFIWG, the mechanical subsystem and the electromagnetical subsystem of the DFIWG first have their port‐controlled Hamiltonian (PCH) realization. Then taking advantage of the feedback interconnection between the subsystems, the entire PCH model of the DFIWG is established. On the basis of this model, the excitation control for the generator speed adjustment is achieved by energy shaping design with the purpose of optimum wind energy capture. Finally, simulation results via MATLAB/Simulink (MathWorks, Natick, MA, USA) confirm the effectiveness of the proposed approach for wind speeds in different operating stages. Copyright © 2012 John Wiley & Sons, Ltd.
Citation
- Journal: Wind Energy
- Year: 2013
- Volume: 16
- Issue: 5
- Pages: 645–659
- Publisher: Wiley
- DOI: 10.1002/we.1514
BibTeX
@article{Song_2012,
title={{Energy‐based excitation control of doubly‐fed induction wind generator for optimum wind energy capture}},
volume={16},
ISSN={1099-1824},
DOI={10.1002/we.1514},
number={5},
journal={Wind Energy},
publisher={Wiley},
author={Song, H.H. and Qu, Y.B.},
year={2012},
pages={645--659}
}
References
- Hansen, A. D., Sørensen, P., Iov, F. & Blaabjerg, F. Control of Variable Speed Wind Turbines with Doubly-Fed Induction Generators. Wind Engineering 28, 411–432 (2004) – 10.1260/0309524042886441
- Anaya‐Lara, O., Hughes, F. M., Jenkins, N. & Strbac, G. Rotor flux magnitude and angle control strategy for doubly fed induction generators. Wind Energy 9, 479–495 (2006) – 10.1002/we.198
- Boukezzar, B. & M’Saad, M. Robust sliding mode control of a DFIG variable speed wind turbine for power production optimization. 2008 16th Mediterranean Conference on Control and Automation 795–800 (2008) doi:10.1109/med.2008.4602145 – 10.1109/med.2008.4602145
- Nemmour, A. L. & Abdessemed, R. The input-output Linearizing Control Scheme of the Doubly-Fed Induction Machine as a Wind Power Generation. Wind Engineering 32, 285–297 (2008) – 10.1260/030952408785363539
- Nemmour, A. L. et al. Advanced Backstepping controller for induction generator using multi-scalar machine model for wind power purposes. Renewable Energy 35, 2375–2380 (2010) – 10.1016/j.renene.2010.02.016
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Nonlinear control of electric machines: an overview. IEEE Control Syst. 14, 41–51 (1994) – 10.1109/37.334414
- Guo, Y., Xi, Z. & Cheng, D. Speed regulation of permanent magnet synchronous motor via feedback dissipative Hamiltonian realisation. IET Control Theory Appl. 1, 281–290 (2007) – 10.1049/iet-cta:20050307
- González, H., Duarte-Mermoud, M. A., Pelissier, I., Travieso-Torres, J. C. & Ortega, R. A novel induction motor control scheme using IDA-PBC. J. Control Theory Appl. 6, 59–68 (2008) – 10.1007/s11768-008-7193-9
- Dòria-Cerezo, A., Batlle, C. & Espinosa-Pérez, G. Passivity-based control of a wound-rotor synchronous motor. IET Control Theory Appl. 4, 2049–2057 (2010) – 10.1049/iet-cta.2009.0641
- De Battista, H., Mantz, R. J. & Christiansen, C. F. Energy-based approach to the output feedback control of wind energy systems. International Journal of Control 76, 299–308 (2003) – 10.1080/0020717031000079373
- Monroy, A., Alvarez-Icaza, L. & Espinosa-Pérez, G. Passivity-based control for variable speed constant frequency operation of a DFIG wind turbine. International Journal of Control 81, 1399–1407 (2008) – 10.1080/00207170701813158
- Batlle, C., Dòria-Cerezo, A. & Ortega, R. Power Flow Control of a Doubly-Fed Induction Machine Coupled to a Flywheel. European Journal of Control 11, 209–221 (2005) – 10.3166/ejc.11.209-221
- Aouzellag, D., Ghedamsi, K. & Berkouk, E. M. Network power flux control of a wind generator. Renewable Energy 34, 615–622 (2009) – 10.1016/j.renene.2008.05.049