Distributed PCHD-Systems, from the Lumped to the Distributed Parameter Case
Authors
Abstract
The Hamiltonian approach has turned out to be an effective tool for modeling, system analysis and controller design in the lumped parameter case. There exist also several extensions to the distributed parameter case. This contribution presents a class of extended distributed parameter Hamiltonian systems, which preserves some useful properties of the well known class of Port Controlled Hamiltonian systems with Dissipation. In addition, special ports are introduced to take the boundary conditions into account. Finally, an introductory example and the example of a piezoelectric structure, a problem with two physical domains, show, how one can use the presented approach for modeling and design.
Keywords
distributed parameter systems, hamiltonian systems with input and dissipation
Citation
- ISBN: 9783540707004
- Publisher: Springer Berlin Heidelberg
- DOI: 10.1007/978-3-540-70701-1_13
BibTeX
@inbook{Schlacher,
title={{Distributed PCHD-Systems, from the Lumped to the Distributed Parameter Case}},
ISBN={9783540707004},
DOI={10.1007/978-3-540-70701-1_13},
booktitle={{Advances in Control Theory and Applications}},
publisher={Springer Berlin Heidelberg},
author={Schlacher, Kurt},
pages={239--255}
}References
- Y. Choquet-Bruhat, Analysis, Manifolds and Physics (1982)
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- H. Ennsbrunner, Infinite Dimensional Euler-Lagrange and Port Hamiltonian Systems (2006)
- Ennsbrunner, H. & Schlacher, K. On the geometrical representation and interconnection of infinite dimensional port controlled Hamiltonian systems. Proceedings of the 44th IEEE Conference on Decision and Control 5263–5268 doi:10.1109/cdc.2005.1582998 – 10.1109/cdc.2005.1582998
- Giachetta, G., Mangiarotti, L. & Sardanashvily, G. New Lagrangian and Hamiltonian Methods in Field Theory. (1997) doi:10.1142/2199 – 10.1142/2199
- E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities (2000)
- Isidori, A. Nonlinear Control Systems. Communications and Control Engineering (Springer London, 1995). doi:10.1007/978-1-84628-615-5 – 10.1007/978-1-84628-615-5
- Nowacki, J. P. Static and Dynamic Coupled Fields in Bodies with Piezoeffects or Polarization Gradient. Lecture Notes in Applied and Computational Mechanics (Springer Berlin Heidelberg, 2006). doi:10.1007/978-3-540-31670-1 – 10.1007/978-3-540-31670-1
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1986). doi:10.1007/978-1-4684-0274-2 – 10.1007/978-1-4684-0274-2
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- E. Zeidler, Applied Functional Analysis (1995)