Distributed Frequency and Voltage Control for AC Microgrids based on Primal-Dual Gradient Dynamics
Authors
Lukas Kölsch, Katharina Wieninger, Stefan Krebs, Sören Hohmann
Abstract
With the gradual transformation of power generation towards renewables, distributed energy resources are becoming more and more relevant for grid stabilization. In order to involve all participants in the joint solution of this challenging task, we propose a distributed, model-based and unifying controller for frequency and voltage regulation in AC microgrids, based on steady-state optimal control. It not only unifies frequency and voltage control, but also incorporates the classic hierarchy of primary, secondary and tertiary control layers with each closed-loop equilibrium being a minimizer of a user-defined cost function. By considering the individual voltage limits as additional constraints in the corresponding optimization problem, no superordinate specification of voltage setpoints is required. Since the dynamic model of the microgrid has a port-Hamiltonian structure, stability of the overall system can be assessed using shifted passivity properties. Furthermore, we demonstrate the effectiveness of the controller and its robustness against fluctuations in active and reactive power demand by means of numerical examples.
Keywords
distributed control; optimization-based control; electric power systems; microgrids; frequency regulation; voltage regulation
Citation
- Journal: IFAC-PapersOnLine
- Year: 2020
- Volume: 53
- Issue: 2
- Pages: 12229–12236
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2020.12.1110
- Note: 21st IFAC World Congress- Berlin, Germany, 11–17 July 2020
BibTeX
@article{K_lsch_2020,
title={{Distributed Frequency and Voltage Control for AC Microgrids based on Primal-Dual Gradient Dynamics}},
volume={53},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2020.12.1110},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Kölsch, Lukas and Wieninger, Katharina and Krebs, Stefan and Hohmann, Sören},
year={2020},
pages={12229--12236}
}
References
- Arrow, (1958)
- Boyd, (2015)
- Chen, L. & You, S. Reverse and Forward Engineering of Frequency Control in Power Networks. IEEE Transactions on Automatic Control vol. 62 4631–4638 (2017) – 10.1109/tac.2016.2624984
- Cherukuri, A., Mallada, E. & Cortés, J. Asymptotic convergence of constrained primal–dual dynamics. Systems & Control Letters vol. 87 10–15 (2016) – 10.1016/j.sysconle.2015.10.006
- De Persis, C. & Monshizadeh, N. A modular design of incremental Lyapunov functions for microgrid control with power sharing. 2016 European Control Conference (ECC) 1501–1506 (2016) doi:10.1109/ecc.2016.7810502 – 10.1109/ecc.2016.7810502
- Dorfler, F., Bolognani, S., Simpson-Porco, J. W. & Grammatico, S. Distributed Control and Optimization for Autonomous Power Grids. 2019 18th European Control Conference (ECC) 2436–2453 (2019) doi:10.23919/ecc.2019.8795974 – 10.23919/ecc.2019.8795974
- Farrokhabadi, M. et al. Microgrid Stability Definitions, Analysis, and Examples. IEEE Transactions on Power Systems vol. 35 13–29 (2020) – 10.1109/tpwrs.2019.2925703
- Jokic, A., Lazar, M. & van den Bosch, P. On Constrained Steady-State Regulation: Dynamic KKT Controllers. IEEE Transactions on Automatic Control vol. 54 2250–2254 (2009) – 10.1109/tac.2009.2026856
- Jouini, T., Arghir, C. & Dörfler, F. Grid-Friendly Matching of Synchronous Machines by Tapping into the DC Storage. IFAC-PapersOnLine vol. 49 192–197 (2016) – 10.1016/j.ifacol.2016.10.395
- Kolsch, L., Bhatt, K., Krebs, S. & Hohmann, S. Steady-State Optimal Frequency Control for Lossy Power Grids with Distributed Communication. 2019 1st International Conference on Electrical, Control and Instrumentation Engineering (ICECIE) 1–8 (2019) doi:10.1109/icecie47765.2019.8974715 – 10.1109/icecie47765.2019.8974715
- Machowski, (2012)
- Magnússon, S., Fischione, C. & Li, N. Voltage Control Using Limited Communication. IFAC-PapersOnLine vol. 50 1–6 (2017) – 10.1016/j.ifacol.2017.08.001
- Mallada, E., Zhao, C. & Low, S. Optimal Load-Side Control for Frequency Regulation in Smart Grids. IEEE Transactions on Automatic Control vol. 62 6294–6309 (2017) – 10.1109/tac.2017.2713529
- Mohagheghi, E., Alramlawi, M., Gabash, A. & Li, P. A Survey of Real-Time Optimal Power Flow. Energies vol. 11 3142 (2018) – 10.3390/en11113142
- Monshizadeh, P., De Persis, C., Stegink, T., Monshizadeh, N. & van der Schaft, A. Stability and frequency regulation of inverters with capacitive inertia. 2017 IEEE 56th Annual Conference on Decision and Control (CDC) 5696–5701 (2017) doi:10.1109/cdc.2017.8264519 – 10.1109/cdc.2017.8264519
- Simpson-Porco, J. W., Poolla, B. K., Monshizadeh, N. & Dorfler, F. Quadratic performance of primal-dual methods with application to secondary frequency control of power systems. 2016 IEEE 55th Conference on Decision and Control (CDC) 1840–1845 (2016) doi:10.1109/cdc.2016.7798532 – 10.1109/cdc.2016.7798532
- Stegink, T. W., De Persis, C. & van der Schaft, A. J. Stabilization of Structure-Preserving Power Networks with Market Dynamics. IFAC-PapersOnLine vol. 50 6737–6742 (2017) – 10.1016/j.ifacol.2017.08.1172
- Stegink, T. W., Persis, C. D. & van der Schaft, A. J. Port-Hamiltonian Formulation of the Gradient Method Applied to Smart Grids. IFAC-PapersOnLine vol. 48 13–18 (2015) – 10.1016/j.ifacol.2015.10.207
- Stegink, T., De Persis, C. & van der Schaft, A. A Unifying Energy-Based Approach to Stability of Power Grids With Market Dynamics. IEEE Transactions on Automatic Control vol. 62 2612–2622 (2017) – 10.1109/tac.2016.2613901
- Trip, S., Bürger, M. & De Persis, C. An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages. Automatica vol. 64 240–253 (2016) – 10.1016/j.automatica.2015.11.021
- van der Schaft, (2017)