Authors

Bing Wang, Min Tian, Tingjun Lin, Yinlong Hu

Abstract

In order to stabilize the fluctuation of wind power and maintain a stable power output, a complementary control idea is proposed. This idea aims to make the output power from two wind farms complement each other. This study proposes a distributed control strategy to solve the complementary control problem of wind turbines in two offshore wind farms on the basis of the Hamiltonian energy theory. The proposed control strategy not only ensures synchronization for wind turbines in the same farm but also keeps the combined output power of the two wind farms stable. First, through the Hamiltonian realization, the single-machine model of a wind turbine is transformed into a port-controlled Hamiltonian system with dissipation (PCHD). Subsequently, the Hamiltonian energy control law is developed on the basis of the energy-shaping method to adjust the Hamiltonian energy function. The complementary control of the two wind farms is designed to synchronize the wind turbines within an individual wind farm and keep the combined output of the two wind farms stable. Furthermore, the complementary control strategy is modified to address the communication delay between the two wind farms by incorporating time delay into the control problem. Finally, the effectiveness of the distributed complementary control has been verified via simulations.

Citation

  • Journal: Sustainability
  • Year: 2018
  • Volume: 10
  • Issue: 2
  • Pages: 553
  • Publisher: MDPI AG
  • DOI: 10.3390/su10020553

BibTeX

@article{Wang_2018,
  title={{Distributed Complementary Control Research of Wind Turbines in Two Offshore Wind Farms}},
  volume={10},
  ISSN={2071-1050},
  DOI={10.3390/su10020553},
  number={2},
  journal={Sustainability},
  publisher={MDPI AG},
  author={Wang, Bing and Tian, Min and Lin, Tingjun and Hu, Yinlong},
  year={2018},
  pages={553}
}

Download the bib file

References

  • Liu, T. Y., Tavner, P. J., Feng, Y. & Qiu, Y. N. Review of recent offshore wind power developments in china. Wind Energy 16, 786–803 (2012) – 10.1002/we.1523
  • Hou, P., Hu, W., Soltani, M. & Chen, Z. Optimized Placement of Wind Turbines in Large-Scale Offshore Wind Farm Using Particle Swarm Optimization Algorithm. IEEE Trans. Sustain. Energy 6, 1272–1282 (2015) – 10.1109/tste.2015.2429912
  • Li, C. et al. Offshore Wind Farm Integration and Frequency Support Control Utilizing Hybrid Multiterminal HVDC Transmission. IEEE Trans. on Ind. Applicat. 50, 2788–2797 (2014) – 10.1109/tia.2013.2293818
  • Shiau, T.-A. & Chuen-Yu, J.-K. Developing an Indicator System for Measuring the Social Sustainability of Offshore Wind Power Farms. Sustainability 8, 470 (2016) – 10.3390/su8050470
  • Madariaga, A., Martín, J. L., Zamora, I., Martínez de Alegría, I. & Ceballos, S. Technological trends in electric topologies for offshore wind power plants. Renewable and Sustainable Energy Reviews 24, 32–44 (2013) – 10.1016/j.rser.2013.03.039
  • Bakka, T., Karimi, H. & Christiansen, S. Linear parameter‐varying modelling and control of an offshore wind turbine with constrained information. IET Control Theory & Appl 8, 22–29 (2014) – 10.1049/iet-cta.2013.0480
  • Chen, Y. et al. Collector System Layout Optimization Framework for Large-Scale Offshore Wind Farms. IEEE Trans. Sustain. Energy 7, 1398–1407 (2016) – 10.1109/tste.2016.2549602
  • Khalid, M. & Savkin, A. V. A model predictive control approach to the problem of wind power smoothing with controlled battery storage. Renewable Energy 35, 1520–1526 (2010) – 10.1016/j.renene.2009.11.030
  • Zhang, Z., Xu, H., Zou, J. & Zheng, G. Sliding mode control-based active power control for wind farm with variable speed wind generation system. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 227, 449–458 (2012) – 10.1177/0954406212462197
  • Prieto-Araujo, E., Junyent-Ferre, A., Lavernia-Ferrer, D. & Gomis-Bellmunt, O. Decentralized Control of a Nine-Phase Permanent Magnet Generator for Offshore Wind Turbines. IEEE Trans. Energy Convers. 30, 1103–1112 (2015) – 10.1109/tec.2015.2412550
  • Wang, B., Wu, Q., Tian, M. & Hu, Q. Distributed Coordinated Control of Offshore Doubly Fed Wind Turbine Groups Based on the Hamiltonian Energy Method. Sustainability 9, 1448 (2017)10.3390/su9081448
  • Wang, L., Wen, J., Cai, M. & Zhang, Y. Distributed Optimization Control Schemes Applied On Offshore Wind Farm Active Power Regulation. Energy Procedia 105, 1192–1198 (2017) – 10.1016/j.egypro.2017.03.411
  • Jiang, Q. & Hong, H. Wavelet-Based Capacity Configuration and Coordinated Control of Hybrid Energy Storage System for Smoothing Out Wind Power Fluctuations. IEEE Trans. Power Syst. 28, 1363–1372 (2013) – 10.1109/tpwrs.2012.2212252
  • Li, Y., Xu, Z., Ostergaard, J. & Hill, D. J. Coordinated Control Strategies for Offshore Wind Farm Integration via VSC-HVDC for System Frequency Support. IEEE Trans. Energy Convers. 32, 843–856 (2017) – 10.1109/tec.2017.2663664
  • Sakamuri, J. N., Altin, M., Hansen, A. D. & Cutululis, N. A. Coordinated frequency control from offshore wind power plants connected to multi terminal DC system considering wind speed variation. IET Renewable Power Gen 11, 1226–1236 (2016) – 10.1049/iet-rpg.2016.0433
  • van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
  • Wang, Y., Cheng, D. & Hong, Y. Stabilization of synchronous generators with the Hamiltonian function approach. International Journal of Systems Science 32, 971–978 (2001) – 10.1080/00207720117758
  • Xi, Z., Cheng, D., Lu, Q. & Mei, S. Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica 38, 527–534 (2002) – 10.1016/s0005-1098(01)00233-3
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002)10.1016/s0005-1098(01)00278-3
  • Ekanayake, J. B., Holdsworth, L. & Jenkins, N. Comparison of 5th order and 3rd order machine models for doubly fed induction generator (DFIG) wind turbines. Electric Power Systems Research 67, 207–215 (2003) – 10.1016/s0378-7796(03)00109-3
  • Ledesma, P. & Usaola, J. Doubly Fed Induction Generator Model for Transient Stability Analysis. IEEE Trans. On Energy Conversion 20, 388–397 (2005) – 10.1109/tec.2005.845523
  • Feng Wu, Xiao-Ping Zhang, Ping Ju & Sterling, M. J. H. Decentralized Nonlinear Control of Wind Turbine With Doubly Fed Induction Generator. IEEE Trans. Power Syst. 23, 613–621 (2008) – 10.1109/tpwrs.2008.920073
  • Mesbahi, M. & Egerstedt, M. Graph Theoretic Methods in Multiagent Networks. (2010) doi:10.1515/9781400835355 – 10.1515/9781400835355
  • Ren, W. & Beard, R. W. Distributed Consensus in Multi-Vehicle Cooperative Control. Communications and Control Engineering (Springer London, 2008). doi:10.1007/978-1-84800-015-5 – 10.1007/978-1-84800-015-5
  • Li, Protocol design for output consensus of port-controlled Hamiltonian multi-agent systems. Acta Autom. Sin. (2014)