Authors

Bing Wang, Qiuxuan Wu, Min Tian, Qingyi Hu

Abstract

To support doubly fed wind turbine (DFWT) groups in offshore wind farms, this paper proposes a distributed coordinated control based on the Hamiltonian energy theory. This strategy provides global stability to closed-loop systems and facilitates output synchronization. First, a model of a DFWT is realized as a port-controlled Hamiltonian system with dissipation (PCH-D), and the single-machine model is expanded into a multi-machine model of a wind turbine group. Then, by using the design methodology of distributed Hamiltonian systems, a distributed coordinated control is presented for a multi-machine PCH-D system. Furthermore, to investigate failures in wind turbine groups, they are divided into two cases: the separation of failed machines from the system, and the grid-connected operation of failed machines after a fault. These cases correspond to undirected and directed graphs, respectively. Finally, simulations prove that distributed coordinated control enhances the reliability and autonomy of wind turbine groups in offshore wind farms.

Citation

  • Journal: Sustainability
  • Year: 2017
  • Volume: 9
  • Issue: 8
  • Pages: 1448
  • Publisher: MDPI AG
  • DOI: 10.3390/su9081448

BibTeX

@article{Wang_2017,
  title={{Distributed Coordinated Control of Offshore Doubly Fed Wind Turbine Groups Based on the Hamiltonian Energy Method}},
  volume={9},
  ISSN={2071-1050},
  DOI={10.3390/su9081448},
  number={8},
  journal={Sustainability},
  publisher={MDPI AG},
  author={Wang, Bing and Wu, Qiuxuan and Tian, Min and Hu, Qingyi},
  year={2017},
  pages={1448}
}

Download the bib file

References

  • Bianchi, F. D., Mantz, R. J. & De Battista, H. Wind Turbine Control Systems. Advances in Industrial Control (Springer London, 2007). doi:10.1007/1-84628-493-7 – 10.1007/1-84628-493-7
  • Liu, T. Y., Tavner, P. J., Feng, Y. & Qiu, Y. N. Review of recent offshore wind power developments in china. Wind Energy 16, 786–803 (2012) – 10.1002/we.1523
  • Orlando, N. A., Liserre, M., Mastromauro, R. A. & Dell’Aquila, A. A Survey of Control Issues in PMSG-Based Small Wind-Turbine Systems. IEEE Trans. Ind. Inf. 9, 1211–1221 (2013) – 10.1109/tii.2013.2272888
  • Fragoso, S., Garrido, J., Vázquez, F. & Morilla, F. Comparative Analysis of Decoupling Control Methodologies and H∞ Multivariable Robust Control for Variable-Speed, Variable-Pitch Wind Turbines: Application to a Lab-Scale Wind Turbine. Sustainability 9, 713 (2017) – 10.3390/su9050713
  • Wei, M. & Chen, Z. Fast control strategy for stabilising fixed‐speed induction‐generator‐based wind turbines in an islanded distributed system. IET Renewable Power Gen 7, 144–162 (2013) – 10.1049/iet-rpg.2011.0324
  • Xu, Y. et al. Distributed Subgradient-Based Coordination of Multiple Renewable Generators in a Microgrid. IEEE Trans. Power Syst. 29, 23–33 (2014) – 10.1109/tpwrs.2013.2281038
  • Prieto-Araujo, E., Junyent-Ferre, A., Lavernia-Ferrer, D. & Gomis-Bellmunt, O. Decentralized Control of a Nine-Phase Permanent Magnet Generator for Offshore Wind Turbines. IEEE Trans. Energy Convers. 30, 1103–1112 (2015) – 10.1109/tec.2015.2412550
  • Bakka, T., Karimi, H. & Christiansen, S. Linear parameter‐varying modelling and control of an offshore wind turbine with constrained information. IET Control Theory & Appl 8, 22–29 (2014) – 10.1049/iet-cta.2013.0480
  • Shiau, T.-A. & Chuen-Yu, J.-K. Developing an Indicator System for Measuring the Social Sustainability of Offshore Wind Power Farms. Sustainability 8, 470 (2016) – 10.3390/su8050470
  • He, S., Chen, J., Yau, D. K. Y. & Sun, Y. Cross-Layer Optimization of Correlated Data Gathering in Wireless Sensor Networks. IEEE Trans. on Mobile Comput. 11, 1678–1691 (2012) – 10.1109/tmc.2011.210
  • Zou, A.-M. & Kumar, K. D. Distributed Attitude Coordination Control for Spacecraft Formation Flying. IEEE Trans. Aerosp. Electron. Syst. 48, 1329–1346 (2012) – 10.1109/taes.2012.6178065
  • Huajing Fang, Zhihai Wu & Jia Wei. Improvement for Consensus Performance of Multi-Agent Systems Based on Weighted Average Prediction. IEEE Trans. Automat. Contr. 57, 249–254 (2012) – 10.1109/tac.2011.2162892
  • Liu, C., Duan, Z., Chen, G. & Huang, L. L2 norm performance index of synchronization and LQR control synthesis of complex networks. Automatica 45, 1879–1885 (2009) – 10.1016/j.automatica.2009.04.004
  • van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
  • Shi, F. & Wang, J. Stabilising control of multi-machine power systems with transmission losses based on pseudo-generalised Hamiltonian theory. IET Control Theory Appl. 6, 173–181 (2012)10.1049/iet-cta.2011.0063
  • Feng Wu, Xiao-Ping Zhang, Ping Ju & Sterling, M. J. H. Decentralized Nonlinear Control of Wind Turbine With Doubly Fed Induction Generator. IEEE Trans. Power Syst. 23, 613–621 (2008) – 10.1109/tpwrs.2008.920073
  • Wang, B., Qian, Y. & Zhang, Y. Robust nonlinear controller design of wind turbine with doubly fed induction generator by using Hamiltonian energy approach. J. Control Theory Appl. 11, 282–287 (2013) – 10.1007/s11768-013-1116-0
  • Godsil, C. & Royle, G. Algebraic Graph Theory. Graduate Texts in Mathematics (Springer New York, 2001). doi:10.1007/978-1-4613-0163-9 – 10.1007/978-1-4613-0163-9
  • Chopra, N. Output Synchronization on Strongly Connected Graphs. IEEE Trans. Automat. Contr. 57, 2896–2901 (2012) – 10.1109/tac.2012.2193704
  • Li, Protocol design for output consensus of port-controlled Hamiltonian multi-agent systems. Acta Autom. Sin. (2014)