Authors

Yanhong Liu, Jianyong Li, Chunwen Li

Abstract

Port-controlled Hamiltonian system method is very useful in the performance enhancement control of power systems, of which the key step is to model the power system as a dissipative Hamiltonian system, i.e., to complete the dissipative Hamiltonian realization (DHR). This paper proposes a DHR for multi-machine multi-load power systems based on a novel DHR structure for nonlinear differential algebraic systems, with which we derive a sufficient condition for the existence and construction of DHRs with constant structure matrices. An example shows that the proposed DHR can facilitate the excitation controller design of power systems.

Citation

  • Journal: 2007 IEEE International Conference on Control Applications
  • Year: 2007
  • Volume:
  • Issue:
  • Pages: 940–945
  • Publisher: IEEE
  • DOI: 10.1109/cca.2007.4389354

BibTeX

@inproceedings{Liu_2007,
  title={{Dissipative Hamiltonian Realization of Multi-machine Multi-load Power Systems}},
  ISSN={1085-1992},
  DOI={10.1109/cca.2007.4389354},
  booktitle={{2007 IEEE International Conference on Control Applications}},
  publisher={IEEE},
  author={Liu, Yanhong and Li, Jianyong and Li, Chunwen},
  year={2007},
  pages={940--945}
}

Download the bib file

References

  • liu, Dissipative Hamiltonian realization of power systems with nonlinear differential algebraic system model. Control and Decision (2007)
  • fujimoto, Canonical transformations and stablization of generalized Hamiltonian systems Systems & Control Letters (2001)
  • Daizhan Cheng. Stabilization of time-varying pseudo-Hamiltonian systems. Proceedings of the International Conference on Control Applications vol. 2 954–959 – 10.1109/cca.2002.1038731
  • cheng, Energy-based stabilization in power systems. Proceedings of the 14th IFAC World Congress (1999)
  • Wang, Y., Cheng, D. & Hong, Y. Stabilization of synchronous generators with the Hamiltonian function approach. International Journal of Systems Science 32, 971–978 (2001) – 10.1080/00207720010007329
  • Galaz, M., Ortega, R., Bazanella, A. S. & Stankovic, A. M. An energy-shaping approach to the design of excitation control of synchronous generators. Automatica 39, 111–119 (2003) – 10.1016/s0005-1098(02)00177-2
  • shen, Adaptive L2disturbance attenuation of Hamiltonian systems with parametric perturbation and application to power systems. Proceedings of the IEEE Conference on Decision and Control (2000)
  • Xi, Z. & Cheng, D. Passivity-based stabilization and H 8 control of the Hamiltonian control systems with dissipation and its applications to power systems. International Journal of Control 73, 1686–1691 (2000) – 10.1080/00207170050201762
  • Transient stabilization of multimachine power systems with nontrivial transfer conductances. IEEE Trans. Automat. Contr. 50, 60–75 (2005)10.1109/tac.2004.840477
  • Xi, Z., Cheng, D., Lu, Q. & Mei, S. Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica 38, 527–534 (2002) – 10.1016/s0005-1098(01)00233-3
  • Yuzhen Wang, Daizhan Cheng, Chunwen Li & You Ge. Dissipative hamiltonian realization and energy-based L/sub 2/-disturbance attenuation control of multimachine power systems. IEEE Trans. Automat. Contr. 48, 1428–1433 (2003) – 10.1109/tac.2003.815037
  • He-Sheng Wang, Chee-Fai Yung & Fan-Ren Chang. H/sub ∞/ control for nonlinear descriptor systems. IEEE Trans. Automat. Contr. 47, 1919–1925 (2002) – 10.1109/tac.2002.804465
  • Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Contr. 45, 1498–1502 (2000) – 10.1109/9.871758
  • Arrillaga, J. & Watson, N. R. Computer Modelling of Electrical Power Systems. (2001) doi:10.1002/9781118878286 – 10.1002/9781118878286
  • van der schaft, L2 Gain and Passivity Techniques in Nonlinear Control (1999)
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002)10.1016/s0005-1098(01)00278-3
  • Lu, Q., Sun, Y., Xu, Z. & Mochizuki, T. Decentralized nonlinear optimal excitation control. IEEE Trans. Power Syst. 11, 1957–1962 (1996) – 10.1109/59.544670
  • maschke, An energy-based derivation of Lyapunov functions for forced systems with applications to stabilizing control. Proceedings of the 14th IFAC World Congress (1999)
  • Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003)10.1016/j.automatica.2003.07.005
  • Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
  • maschke, Port-controlled Hamiltonian systems: modelling origins and system theoretic properties. Proceedings of the IFAC Symposium on NOLCOS (1992)
  • fujimoto, Stabilization of Hamiltonian systems with nonholonomic constrains based on time-varying generalized canonical transformations Systems & Control Letters (2001)
  • Ortega, R. & Spong, M. W. Adaptive motion control of rigid robots: A tutorial. Automatica 25, 877–888 (1989) – 10.1016/0005-1098(89)90054-x
  • Wang, Y., Cheng, D., Liu, Y. & Li, C. AdaptiveH∞excitation control of multimachine power systems via the Hamiltonian function method. International Journal of Control 77, 336–350 (2004) – 10.1080/0020717042000196254
  • Hiskens, I. A. & Hill, D. J. Energy functions, transient stability and voltage behaviour in power systems with nonlinear loads. IEEE Trans. Power Syst. 4, 1525–1533 (1989) – 10.1109/59.41705
  • Bergen, A. R. & Hill, D. J. A Structure Preserving Model for Power System Stability Analysis. IEEE Trans. on Power Apparatus and Syst. PAS-100, 25–35 (1981) – 10.1109/tpas.1981.316883
  • Venkatasubramanian, V., Schattler, H. & Zaborsky, J. Dynamics of large constrained nonlinear systems-a taxonomy theory [power system stability]. Proc. IEEE 83, 1530–1561 (1995) – 10.1109/5.481633
  • Tsolas, N., Arapostathis, A. & Varaiya, P. A structure preserving energy function for power system transient stability analysis. IEEE Trans. Circuits Syst. 32, 1041–1049 (1985) – 10.1109/tcs.1985.1085625
  • Tsolas, N., Arapostathis, A. & Varaiya, P. A structure preserving energy function for power system transient stability analysis. IEEE Trans. Circuits Syst. 32, 1041–1049 (1985) – 10.1109/tcs.1985.1085625
  • Liu, Y., Li, C. & Wu, R. Feedback control of nonlinear differential algebraic systems using Hamiltonian function method. SCI CHINA SER F 49, 436–445 (2006) – 10.1007/s11432-006-2004-8