Discrete-Time Port-Hamiltonian Systems for Power and Energy Applications
Authors
Alejandro Garcés-Ruiz, Sofia Avila-Becerril, Gerardo Espinosa-Perez
Abstract
The Port-Hamiltonian formalism has demonstrated to be useful in different applications, allowing to explore structural properties to obtain stable controls. A common approach is to design controls in a continuous domain although, in practice, they are implemented in discrete time. However, the study of discrete-time port-Hamiltonian systems is challenging since the system may lose structural properties such as passivity after discretization. This paper shows that passivity is conserved for the backward Euler discretization method when the Hamiltonian is convex, and its gradient is Lipschitz. This result is relevant for power systems applications such as the control of two-area systems, high-voltage direct-current transmission, and microgrids. Although our method is simple and preserves passivity, it does not preserve the symplectic structure of the hamiltonian.
Keywords
Port-hamiltonian systems; pasivity-based control; power systems dynamics; control; power electronic converters
Citation
- Journal: IFAC-PapersOnLine
- Year: 2024
- Volume: 58
- Issue: 6
- Pages: 166–171
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2024.08.275
- Note: 8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2024- Besançon, France, June 10 – 12, 2024
BibTeX
@article{Garc_s_Ruiz_2024,
title={{Discrete-Time Port-Hamiltonian Systems for Power and Energy Applications}},
volume={58},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2024.08.275},
number={6},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Garcés-Ruiz, Alejandro and Avila-Becerril, Sofia and Espinosa-Perez, Gerardo},
year={2024},
pages={166--171}
}
References
- Aoues, S., Di Loreto, M., Eberard, D. & Marquis-Favre, W. Hamiltonian systems discrete-time approximation: Losslessness, passivity and composability. Systems & Control Letters vol. 110 9–14 (2017) – 10.1016/j.sysconle.2017.10.003
- Avila-Becerril, S., Espinosa-Pérez, G. & Machado, J. E. A Hamiltonian control approach for electric microgrids with dynamic power flow solution. Automatica vol. 139 110192 (2022) – 10.1016/j.automatica.2022.110192
- Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: A Fresh Approach to Numerical Computing. SIAM Review vol. 59 65–98 (2017) – 10.1137/141000671
- Boyd, (2004)
- Butcher, (2008)
- Garcés-Ruiz, A., Riffo, S., González-Castaño, C. & Restrepo, C. Model Predictive Control With Stability Guarantee for Second-Order DC/DC Converters. IEEE Transactions on Industrial Electronics vol. 71 5157–5165 (2024) – 10.1109/tie.2023.3283706
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters vol. 133 104530 (2019) – 10.1016/j.sysconle.2019.104530
- Lin, W. & Byrnes, C. I. KYP lemma, state feedback and dynamic output feedback in discrete-time bilinear systems. Systems & Control Letters vol. 23 127–136 (1994) – 10.1016/0167-6911(94)90042-6
- Loomis, (2014)
- Macchelli, A. Control Design for a Class of Discrete-Time Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 68 8224–8231 (2023) – 10.1109/tac.2023.3292180
- Moreschini, A., Bin, M., Astolfi, A. & Parisini, T. On ϱ-passivity. IFAC-PapersOnLine vol. 56 8556–8561 (2023) – 10.1016/j.ifacol.2023.10.016
- Moreschini, A., Monaco, S. & Normand-Cyrot, D. Dirac Structures for a Class of Port-Hamiltonian Systems in Discrete Time. IEEE Transactions on Automatic Control vol. 69 1999–2006 (2024) – 10.1109/tac.2023.3313327
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Riis, E. S., Ehrhardt, M. J., Quispel, G. R. W. & Schönlieb, C.-B. A Geometric Integration Approach to Nonsmooth, Nonconvex Optimisation. Foundations of Computational Mathematics vol. 22 1351–1394 (2021) – 10.1007/s10208-020-09489-2
- Sakamoto, K. et al. Development of a control system for a high-performance self-commutated AC/DC converter. IEEE Transactions on Power Delivery vol. 13 225–232 (1998) – 10.1109/61.660882
- Shores, T. S. Applied Linear Algebra and Matrix Analysis. Undergraduate Texts in Mathematics (Springer International Publishing, 2018). doi:10.1007/978-3-319-74748-4 – 10.1007/978-3-319-74748-4
- van der Schaft, (2014)