Decomposition of linear port-Hamiltonian systems
Authors
Abstract
It is well known that the power conserving interconnection of finite dimensional port-Hamiltonian systems is also a port-Hamiltonian system. Given a linear port Hamiltonian system, this paper proposes conditions under which the control system can be expressed as a composition of two linear port-Hamiltonian systems. This decomposition of linear port-Hamiltonian systems is based on the inherent interconnection structure and can be applied without knowledge of the physical interconnection structure.
Citation
- Journal: Proceedings of the 2011 American Control Conference
- Year: 2011
- Volume:
- Issue:
- Pages: 3686–3691
- Publisher: IEEE
- DOI: 10.1109/acc.2011.5991475
BibTeX
@inproceedings{Hoffner_2011,
title={{Decomposition of linear port-Hamiltonian systems}},
DOI={10.1109/acc.2011.5991475},
booktitle={{Proceedings of the 2011 American Control Conference}},
publisher={IEEE},
author={Hoffner, K. and Guay, M.},
year={2011},
pages={3686--3691}
}
References
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.2307/2001258
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica 43, 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- van der schaft, L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Science (1999)
- bloch, Representations of Dirac structures on vector spaces and nonlinear LC circuits. Proc Symp Pure Math Differential Geometry and Control Theory (1999)
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Libermann, P. & Marle, C.-M. Symplectic Geometry and Analytical Mechanics. (Springer Netherlands, 1987). doi:10.1007/978-94-009-3807-6 – 10.1007/978-94-009-3807-6
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica 46, 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Pappas, G. J., Lafferriere, G. & Sastry, S. Hierarchically consistent control systems. IEEE Trans. Automat. Contr. 45, 1144–1160 (2000) – 10.1109/9.863598