(Cyclo-Passive) Port-Controlled Hamiltonian dynamics in LQ differential games
Authors
M. Sassano, T. Mylvaganam, A. Astolfi
Abstract
It is shown that the state/costate dynamics arising in a certain class of linear quadratic differential games can be interpreted as the interconnection of (cyclo-passive) Port-Controlled Hamiltonian systems. This property relies on the fact that the (virtual) energy functions associated to each player depend only on the interplay between the inputs of the players, as opposed to the system’s matrix or the individual cost functionals. Finally, it is shown that an arbitrarily accurate approximation of an open-loop Nash equilibrium strategy, obtained from the trajectories of the state/costate system, can be robustified by externally stabilizing the stable eigenspace of the underlying state/costate system.
Citation
- Journal: 2021 American Control Conference (ACC)
- Year: 2021
- Volume:
- Issue:
- Pages: 704–709
- Publisher: IEEE
- DOI: 10.23919/acc50511.2021.9483326
BibTeX
@inproceedings{Sassano_2021,
title={{(Cyclo-Passive) Port-Controlled Hamiltonian dynamics in LQ differential games}},
DOI={10.23919/acc50511.2021.9483326},
booktitle={{2021 American Control Conference (ACC)}},
publisher={IEEE},
author={Sassano, M. and Mylvaganam, T. and Astolfi, A.},
year={2021},
pages={704--709}
}
References
- engwerda, LQ Dynamic Optimization and Differential Games (2005)
- Ho, Y. C. Differential games, dynamic optimization, and generalized control theory. J Optim Theory Appl 6, 179–209 (1970) – 10.1007/bf00926600
- Sassano, M., Mylvaganam, T. & Astolfi, A. An algebraic approach to dynamic optimisation of nonlinear systems: a survey and some new results. Journal of Control and Decision 6, 1–29 (2018) – 10.1080/23307706.2018.1552208
- zhou, Robust and Optimal Control (1996)
- Blankenstein, G. & van der Schaft, A. Optimal control and implicit Hamiltonian systems. Lecture Notes in Control and Information Sciences 185–205 (2001) doi:10.1007/bfb0110216 – 10.1007/bfb0110216
- Liberzon, D. Calculus of Variations and Optimal Control Theory. (2011) doi:10.2307/j.ctvcm4g0s – 10.2307/j.ctvcm4g0s
- willems, Qualitative behavior of interconnected systems. Annals of Systems Research (1973)
- van der Schaft, A. Cyclo-Dissipativity Revisited. IEEE Trans. Automat. Contr. 66, 2920–2924 (2021) – 10.1109/tac.2020.3013941
- Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493
- Cappello, D. et al. A Hybrid Controller for Multi-Agent Collision Avoidance via a Differential Game Formulation. IEEE Trans. Contr. Syst. Technol. 29, 1750–1757 (2021) – 10.1109/tcst.2020.3005602
- LaValle, S. M. & Hutchinson, S. Game theory as a unifying structure for a variety of robot tasks. Proceedings of 8th IEEE International Symposium on Intelligent Control 429–434 doi:10.1109/isic.1993.397675 – 10.1109/isic.1993.397675
- Stanková, K., Brown, J. S., Dalton, W. S. & Gatenby, R. A. Optimizing Cancer Treatment Using Game Theory. JAMA Oncol 5, 96 (2019) – 10.1001/jamaoncol.2018.3395
- Mylvaganam, T. & Sassano, M. Autonomous collision avoidance for wheeled mobile robots using a differential game approach. European Journal of Control 40, 53–61 (2018) – 10.1016/j.ejcon.2017.11.005
- Starr, A. W. & Ho, Y. C. Nonzero-sum differential games. J Optim Theory Appl 3, 184–206 (1969) – 10.1007/bf00929443
- basar, Dynamic Noncooperative Game Theory (1982)
- Marden, J. R., Ruben, S. D. & Pao, L. Y. A Model-Free Approach to Wind Farm Control Using Game Theoretic Methods. IEEE Trans. Contr. Syst. Technol. 21, 1207–1214 (2013) – 10.1109/tcst.2013.2257780
- Marden, J. R. & Shamma, J. S. Game Theory and Control. Annu. Rev. Control Robot. Auton. Syst. 1, 105–134 (2018) – 10.1146/annurev-control-060117-105102
- Starr, A. W. & Ho, Y. C. Further properties of nonzero-sum differential games. J Optim Theory Appl 3, 207–219 (1969) – 10.1007/bf00926523